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Abstract—EEGLAB is a MATLAB-based software that is 

widely used for EEG signal processing due to its complete 

features, analysis flexibility, and active open-source community. 

This review aims to evaluate the use of EEGLAB based on 55 

research articles published between 2020 and 2024, and analyze 

its prospects and limitations in EEG processing. The articles 

were obtained from reputable databases, namely ScienceDirect, 

IEEE Xplore, SpringerLink, PubMed, Taylor & Francis, and 

Emerald Insight, and have gone through a strict study selection 

stage based on eligibility criteria, topic relevance, and 

methodological quality. The review results show that EEGLAB 

is widely used for EEG data preprocessing such as filtering, 

ICA, artifact removal, and advanced analysis such as ERP, 

ERSP, brain connectivity, and activity source estimation. 

EEGLAB has bright prospects in the development of 

neuroinformatics technology, machine learning integration, 

multimodal analysis, and large-scale EEG analysis which is 

increasingly needed. However, EEGLAB still has significant 

limitations, including a high reliance on manual inspection in 

preprocessing, low spatial resolution in source modeling, limited 

multimodal integration, low computational efficiency for large-

scale EEG data, and a high learning curve for new users. To 

overcome these limitations, future research is recommended to 

focus on developing more accurate automation methods, 

increasing the spatial resolution of source analysis, more 

efficient multimodal integration, high computational support, 

and implementing open science with a standardized EEG data 

format. This review provides a novel contribution by 

systematically mapping EEGLAB’s usage trends and 

pinpointing critical technical and methodological gaps that must 

be addressed for broader neurotechnology adoption. 

Keywords—EEGLAB; EEG Signal Processing; ICA; Artifact 

Removal; EEG Connectivity Analysis. 

I. INTRODUCTION 

Electroencephalography (EEG) is an important technique 

in neuroscience that enables non-invasive monitoring of brain 

electrical activity with high temporal resolution [1]. EEG has 

long been used in various clinical applications such as the 

diagnosis of epilepsy, sleep disorders, and other neurological 

disorders [2]. In addition, EEG also plays an important role 

in psychology research, cognitive neuroscience, and the 

development of brain-based technologies such as brain-

computer interface (BCI) [3]. The advantage of EEG over 

other neuroimaging methods is its ability to directly record 

neural activity at a relatively low cost [4]. However, the high 

complexity of EEG signals, especially due to artefacts from 

muscle activity (EMG), eye movements (EOG), as well as 

other external disturbances such as electrical artefacts from 

the surrounding environment, adds to the challenges in EEG 

data analysis [5]. These conditions make the processing of 

EEG signals complicated, requiring effective preprocessing 

techniques and powerful analysis software [6]. Without 

proper processing, interpretation of EEG data can be severely 

distorted and reduce the validity of research findings and 

clinical diagnosis [7]. 

Reliable EEG analysis software is needed to overcome 

these challenges. One such software that has become a de 

facto standard in the global EEG community is EEGLAB [8]. 

EEGLAB is an open-source MATLAB-based toolbox 

developed by the Swartz Center for Computational 

Neuroscience (SCCN), University of California San Diego 

(UCSD) [9]. Released in the early 2000s, EEGLAB has been 

widely adopted due to its flexible capabilities, intuitive user 

interface, and comprehensive and accessible documentation 

[10]. Key features of EEGLAB include EEG signal 

preprocessing such as filtering, epoching, re-referencing, and 

detrending, as well as advanced methods such as Independent 

Component Analysis (ICA) that are highly effective in 

separating artefacts from pure neural signals [11]. EEGLAB 

also offers advanced analysis capabilities such as spectral 

analysis, time-frequency decomposition, and brain 

connectivity analysis that allow researchers to explore EEG 

data in greater depth [12]. Additional plugins developed by 

the EEGLAB user community further enrich the software's 

capabilities [13]. 

However, EEGLAB also has some limitations that need 

to be considered. Despite its popularity, there has been a lack 

of recent reviews that systematically assess EEGLAB's 

technical barriers and its readiness for integration with 
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modern computational neuroscience frameworks, creating a 

significant research gap. One of the main issues is EEGLAB's 

dependence on a paid MATLAB license, which is an obstacle 

for institutions or researchers who have limited resources 

[14]. In addition, using EEGLAB to manage EEG data on a 

large scale usually requires high MATLAB scripting skills, 

which can be a barrier for users with non-technical 

backgrounds [15]. The issue of inter-format compatibility of 

EEG data as well as the lack of direct integration with modern 

machine learning and deep learning techniques are also 

significant limitations [16]. Therefore, an in-depth review of 

EEGLAB is needed to clearly identify the software's 

strengths and limitations. A comprehensive evaluation of 

EEGLAB's features, technical challenges, and 

methodological limitations can provide an objective picture 

of its current state while highlighting the potential 

improvements needed to overcome these challenges. The 

main objective of this review is to provide a comprehensive 

overview of the EEGLAB software by examining its key 

features, analyzing the challenges experienced by users, and 

exploring its potential and future development prospects. 

With a scope that includes a systematic evaluation of the use 

of EEGLAB in various fields of EEG research, this review is 

expected to be an important reference for the scientific and 

clinical communities in developing more effective, efficient, 

and integrated EEG analysis methods in the future. 

II. REVIEW METHOD 

A literature search of various academic databases was 

conducted to find articles related to the use of EEGLAB to 

support the processing and visualization of EEG data in 

various neurology-related studies. 

A. Search Strategy 

The search query considers the title, abstract, and 

keyword sections. The search criteria included four 

keywords: “EEGLAB”, “MATLAB Toolbox”, “EEG Signal 

Processing”, and “EEG Research”, which were combined 

using AND, OR operators. Various databases such as 

ScienceDirect, IEEE Xplore, SpringerLink, PubMed, Taylor 

& Francis, and Emerald Insight were queried for research 

articles published from 2020 to 2024. Table I shows the 

search queries performed on the selected databases. 

TABLE I.  SEARCH STRATEGY ON SELECTED DATABASES 

Database Search Query 

IEEE Xplore 

("EEGLAB" OR "MATLAB Toolbox") AND 

("EEG Research" OR "EEG Signal 

Processing") 

PubMed 

SpringerLink 

Taylor & Francis 

ScienceDirect 

Emerald Insight 
 

The reason for selecting databases such as ScienceDirect, 

IEEE Xplore, SpringerLink, PubMed, Taylor & Francis, and 

Emerald Insight in this review is that each provides access to 

highly reputable scientific journals in the fields of biomedical 

engineering, neuroscience, information technology, and 

health sciences. PubMed is particularly relevant for obtaining 

clinical and biomedical literature related to the use of EEG 

and EEGLAB applications in a healthcare context. IEEE 

Xplore and ScienceDirect excel in providing articles related 

to technology, signal processing, and software development, 

including the MATLAB toolbox. While SpringerLink, 

Taylor & Francis, and Emerald Insight offer broad coverage 

in multidisciplinary research, including aspects of education, 

cognitive psychology, and software innovation. The 

combination of these databases allowed for a thorough and 

representative review of current practices and developments 

in the use of EEGLAB. 

B. Eligibility Criteria 

In an effort to compile a comprehensive and 

representative literature review, the selection of articles was 

made with reference to a number of strict inclusion criteria. 

Firstly, only articles available in full-text and written in 

English were considered. This was done to ensure that the 

content of the articles could be thoroughly analyzed and 

understood by the international scientific community. 

Limited access or articles in other languages may hinder the 

process of data verification, reproducibility of methods, and 

global relevance of the findings. Secondly, the publication 

timeframe is limited to the period 2020 to 2024, so that the 

review results reflect the current state of the use of EEGLAB 

in EEG research. The world of neurotechnology and EEG 

signal processing is evolving rapidly, with significant 

improvements in the integration of machine learning, brain 

connectivity, and advanced signal processing techniques. 

Therefore, this time restriction is important to maintain the 

relevance and topicality of the literature review. 

Thirdly, the articles should explicitly mention and use 

EEGLAB as the primary software in the analysis of EEG 

data. The main focus of this review is to evaluate the strengths 

and weaknesses of EEGLAB specifically, not to discuss EEG 

software in general. Therefore, articles that only briefly 

mentioned EEGLAB or did not explain its use in analysis 

were not included in the review. Fourth, the context of 

EEGLAB application in the article should be clear and 

relevant. EEGLAB should be used within the framework of 

real EEG research or applications, such as in clinical studies 

(e.g. epilepsy, sleep disorders, or intraoperative 

neurophysiological monitoring), as well as experimental 

research involving cognitive processes, emotions, perception, 

or motor control. Articles using EEGLAB in interdisciplinary 

fields such as neuropsychology, neuroinformatics, and 

artificial intelligence (AI) are also included, as long as the use 

of EEGLAB plays a central role in the data analysis process. 

By applying these four criteria, the review is expected to 

produce a literature mapping that is not only comprehensive, 

but also has a strong focus, methodological quality, and 

scientific significance in understanding the utilization of 

EEGLAB in the context of modern EEG. 

C. Study Selection 

In conducting this review, we used Rayyan, a web-based 

tool designed to efficiently support the systematic review 

process. Rayyan was chosen for its ability to quickly sift and 

organize the literature, as well as its collaborative features 

that support simultaneous teamwork. One of Rayyan's key 

functions that was particularly useful was the ability to 

identify and remove duplicate records from multiple 

databases. Thus, we were able to build a unique and clean 

reference database as the basis for the subsequent article 
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selection process. The article selection process followed the 

three-step method recommended in the systematic review 

literature [17], and was applied consistently to ensure 

objectivity and transparency, as presented in the flow 

diagram in Fig. 1. The first step was an assessment of article 

titles to quickly filter out publications that were not explicitly 

related to the topic of EEGLAB or EEG signal processing. 

This stage aims to reduce the workload in later stages by 

eliminating entries that are clearly not relevant. 

The second step was a review of the abstracts and 

keywords, which allowed an initial identification of articles 

that might fulfil the inclusion criteria based on the scope of 

their content. The focus on this section provided an initial 

overview of the context, methodological approach, and the 

extent to which EEGLAB was used substantially in the study. 

Only articles that showed relevance and potential for further 

review proceeded to the third step. The third step was a full-

text analysis of the pre-selected articles. At this stage, we 

conducted a thorough evaluation of the content to assess its 

compliance with the pre-defined inclusion criteria, including 

details of EEGLAB usage, the context of EEG application, 

and the validity and relevance of the study findings. This 

process allowed us to assess the quality and depth of each 

article's contribution to the topic. Finally, after going through 

the three-stage selection process, we compiled a final 

database of articles that met the eligibility criteria. This set of 

references became the main foundation for the content 

analysis and synthesis of the results in this review. This 

systematic approach is expected to minimize selection bias 

and enhance the reproducibility and credibility of the review 

results we present. 

 

Fig. 1. PRISMA flow diagram & screen 

D. Quality Assessment 

In the process of assessing the quality of the articles 

included in this review, five main criteria were used, which 

were aligned with the principles of systematic evaluation in 

EEG research, particularly regarding the use of EEGLAB 

software. The first criterion was clarity of purpose and 

research question, which required each article to have an 

explicit focus and clearly outline the goal or hypothesis to be 

achieved. This is important to assess the extent to which the 

use of EEGLAB supports the scientific goals of the study. 

The second criterion is transparent design and methodology, 

where articles are assessed based on the clarity in describing 

the stages of EEG analysis, including preprocessing methods, 

use of ICA, signal segmentation, as well as parameters used 

in EEGLAB. Studies that present a detailed methodology are 

easier to replicate and evaluate objectively. The third 

criterion is the validity of the use of EEGLAB, i.e. the extent 

to which EEGLAB was used substantially in the study. 

Articles that only mentioned EEGLAB without explaining its 

application were not considered to fulfil the quality expected 

in this review. Therefore, only studies that documented the 

actual and technical functions of EEGLAB in the EEG 

analysis process were accepted. 

The fourth criterion focuses on clear and measurable 

reporting of results. Articles should present quantitative and 

interpretable EEG analysis result data, such as time-

frequency results, power spectral density values, or ICA 

metrics. Complete reporting of results reflects the quality and 

real contribution of using EEGLAB in supporting scientific 

findings. Finally, discussion and study limitations are also 

important indicators in quality assessment. A good article 

should include a critical discussion of the results obtained, as 

well as mention the limitations of both the technical use of 

EEGLAB and the overall study methodology. Openness to 

these limitations demonstrates scientific integrity and 

provides a direction for further development for future users 

of EEGLAB. The following is the number of articles related 

to the use of EEGLAB in EEG signal processing from 

selected databases published between 2020-2024 as a result 

of the quality assessment. 

Of the total publications that have gone through the 

quality assessment process (Fig. 2), it can be seen that the 

Taylor & Francis database accounts for the largest number of 

articles, with 24 articles, signalling the dominance and high 

concentration of publications related to this topic in journals 

under Taylor and Francis. This was followed by Science 

Direct with 13 articles, indicating that this platform is also an 

important source of EEGLAB-related literature. Other 

databases such as IEEE and SpringerLink contributed 7 and 

5 articles respectively, reflecting significant participation 

from the engineering and computer science communities. 

Meanwhile, PubMed recorded only 4 articles, which may 

indicate that the use of EEGLAB has not been widely 

reported in biomedical-based clinical medical literature. 

Emerald Insight contributed the smallest number with 2 

articles, suggesting a more limited relevance in this topic. 

This distribution indicates that the focus of EEGLAB-related 

research is found more in engineering-orientated journals, 

cognitive psychology, and experimental neuroscience, 

compared to purely clinical medical journals. 

In addition, Fig. 3. presents the distribution of articles 

from selected databases by publication year between 2020 

and 2024. There is a significant upward trend in the number 
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of publications discussing the use of EEGLAB for EEG 

signal processing over the five-year period. This distribution 

reflects the growing interest and increased research activity 

in the field of EEGLAB-based EEG signal processing, most 

likely triggered by the increasing adoption of neuroinformatics 

technologies and the need for more efficient and flexible EEG 

data analysis. This trend also indicates that EEGLAB is gaining 

relevance in the scientific community and becoming an 

important tool in interdisciplinary EEG research. 

 

Fig. 2. Number of articles from selected databases 

 

Fig. 3. Distribution of articles based on the year of publication 

III. EEGLAB FOR EEG SIGNAL PROCESSING 

Several studies have shown that EEGLAB is widely used 

for EEG data analysis in experimental and clinical studies, 

with the application of techniques such as filtering, re-

referencing, and ICA. For example, Hirth et al. [18] utilised 

EEGLAB to analyse upper arm motor performance with 64-

channel EEG, but did not explicitly explain its limitations. 

Jing et al. [19] also used EEGLAB on driver fatigue data with 

8 channels, focusing on spectral and topographic analyses. 

Meanwhile, Schade et al. [20] examined the effect of EEG 

stimulation with habituation and sham protocols on 10 

channels, with features such as FFT and PSD, but also did not 

review the limitations of the platform. In a more complex 

case, Mahdid et al. [21] evaluated EEGLAB with various 

EEG systems, ranging from 8 to 128 channels. They found 

that ICA on EEGLAB is suboptimal for systems with low 

channel counts, and that topographic visualizations such as 

topo plots have limitations in handling uneven electrode 

distributions. King et al. [22] pointed out limitations in terms 

of automation and real-time analysis when using EEGLAB in 

time stress studies. They mentioned that although features 

such as ERSP and time-frequency analysis were available, 

artefact detection was still done manually. 

Other studies highlighted specific limitations in the 

context of the population or device. Vesoulis et al. [23] 

explicitly did not use EEGLAB because they considered that 

the toolbox was not suitable for neonatal EEG, mainly due to 

limitations in handling restricted channels and non-adult data 

characteristics. Similarly, Chen et al. [24] showed that 

EEGLAB's ICLabel was not effective in detecting 

multisource artefacts in ictal EEG data from epilepsy 

patients, especially when the number of channels was limited. 

Meanwhile, Moliadze et al. [25] and Zhou et al. [26] used 

EEGLAB in ASD and Herpes Zoster studies, but did not 

provide a critical evaluation of its performance or limitations. 

Similarly, a study by Mehmood et al. [27] who used 

EEGLAB for ERP generation in children with special needs. 

Some studies tried to extend the use of EEGLAB with 

additional integrations. Thompson et al. [28] combined 

EEGLAB with FieldTrip and SleepSMG toolboxes, but noted 

that the integration still had to be done manually.  

Cancino et al. [29] added the NSG plugin for integration with 

HPC-based computing, but recognised that EEGLAB is not 

optimal for big data due to low transfer rates and high parallel 

overhead. García et al. [30] and Niu et al. [31] utilised 

EEGLAB for preprocessing and microstate analysis, 

including coverage and occurrence calculations. However, 

they also indicated that EEGLAB does not support the BIDS 

standard and features such as nested cross-validation, which 

are important for multivariate decoding studies. 

The use of EEGLAB in cognitive experimental research 

was also seen in studies by Pozharliev et al. [32] and 

Fuhrmeister et al. [33]. Both applied EEGLAB to a 

population of university students and German speakers, 

respectively to process EEG signals in business and linguistic 

affection contexts. They used standard features such as 

filtering, ICA, segmentation, and eye artefact analysis 

(SASICA). However, like many other studies, the limitations 

of EEGLAB were not explicitly spelled out, signalling a 

possible lack of critical evaluation of the technical aspects of 

data processing. In the motor experimental study by Mushtaq 

et al. [34], EEGLAB was used for a rapid arm-reaching task 

with 64-channel EEG, including filtering, rereferencing, ICA 

with Infomax algorithm, as well as baseline correction and 

integration with FieldTrip. Although limitations are not 

described, the use of full features and external integration 

reflects the flexibility of EEGLAB for neuromotor tasks. In a 

clinical context, Lopes et al. [35] used EEGLAB to analyze 

EEG signals from epilepsy patients and healthy subjects, 

focusing on IC labelling and PSD visualization. They 

highlighted that the ICLabel plugin used did not utilize the IC 

time-series information, thus reducing the accuracy of 

component classification. This suggests that although 

EEGLAB provides an automated labelling artefact tool, its 

classification reliability can still be improved with a time-

based approach. 

In the pediatric population, Harwood et al. [36] used 

EEGLAB with the PREP pipeline for ERP analysis of 128-

channel EEG. This study did not mention any limitations, 

although the complexity of early childhood data should 

require robust artefact validation features. Bi et al. [37], in an 

anesthesia study, noted that EEGLAB is less efficient for 

analyzing large-channel data such as 256-channel, 
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particularly when used for coherence analysis and sparsity 

representation. The pseudo-EEG simulation study by 

Pellegrini et al. [38] and the use of multi-conditioning by 

Caetano et al. [39] show that EEGLAB can be integrated with 

the ROIconnect toolbox and AAS methods. However, 

Caetano notes that artefact processing in EEGLAB is not 

efficient for real-time applications, marking a limitation to 

real-time-based neurofeedback or BCI applications. Large-

scale research such as by Bailey et al. [40] highlighted the 

weakness of the ICA algorithm in EEGLAB for ERP 

analysis with slow signals (<1 Hz). They also used various 

plugins such as ICLabel, PREP, wICA, and MWF, which 

showed the need for strengthening artefact cleaning features 

in complex scenarios. On the other hand, Rashmi et al. [41] 

highlighted the weakness of EEGLAB in terms of user 

interface, which is considered unfriendly for beginners due 

to the less intuitive GUI. 

Meanwhile, Coyle et al. [42] utilised EEGLAB for 

connectivity analysis in mTBI patients and healthy controls. 

Although its limitations were not spelled out, its use for wPLI 

power and connectivity analysis demonstrated the 

compatibility of EEGLAB for clinical neurophysiological 

studies. The study by Simfukwe et al. [43] with 890 subjects 

also showed that preprocessing with ICA and ASR was still 

predominantly done manually, emphasising the need for a 

more robust automated pipeline. Jianbiao et al. [44] on 

tinnitus patients also found that EEGLAB did not support 

advanced non-linear signal analysis and ICA required manual 

curation. In the ICU EEG study by Hbibi et al. [45], although 

EEGLAB supports advanced plugins such as AMICA, 

REGICA, and AAR, manual intervention is still required and 

there is no support for thorough multifractal analysis.  

Gao et al. [46] again showed that for real-time applications, 

such as the use of the FMRIB plugin (AAS method), EEGLAB 

is not ideal without extensive manual preprocessing. This 

confirms that although EEGLAB is highly modular, its optimal 

use still demands high technical involvement and limitations in 

straightforward processing scenarios. 

Several large studies in clinical populations have again 

highlighted the challenges of EEGLAB in handling 

multichannel data and the need for more comprehensive 

functional analyses. Simfukwe et al. [47] analyzed 534 

subjects with 19-channel EEG and noted the limitations of 

EEGLAB in describing functional coherence between brain 

locations. This was reinforced by Zhou et al. [48] in a migraine 

study, where although EEGLAB was used for segmentation 

and automatic artifact removal (AAR), the artefact detection 

process remained manual and not real-time. Likewise, Wu et 

al. [49] in their post-stroke fatigue study stated that artefact 

inspection was done visually and EEGLAB does not yet 

support connectivity analysis directly, underlining the 

limitations in the brain network exploration pipeline. The study 

by Mazzeo et al. [50] on patients with subjective cognitive 

decline (SCD) reflects the complexity of the practice of using 

EEGLAB. They implemented various functions such as PREP, 

ICA, ICLabel, and microstate analysis, but acknowledged that 

the pipeline is still highly dependent on manual inspection and 

does not yet support machine learning flow natively. 

Meanwhile, Kawar et al. [51] who examined the EEG of 

ADHD children pointed out that EEGLAB does not yet have a 

sufficient automated artefact cleaning system for the pediatric 

population, where noise tends to be higher and more varied. 

In the context of chronic pain, Knoph et al. [52] noted that 

EEGLAB was used for ERP extraction and IC labelling in 

chronic pancreatitis patients, but the process relied heavily on 

visual inspection and did not include non-linear EEG 

analysis. While Zhao et al. [53] who examined brain activity 

in adolescents with depression used EEGLAB for ERPs, the 

pipeline still relied on manual ICA and did not support real-

time processing, which is important for interventional or 

neurofeedback applications. The study of Taberna et al. [54] 

with 128-256 EEG channels in various tasks (resting, visual, 

motor) underlined that EEGLAB is not ideal for large-scale 

datasets due to the large number of stages that require visual 

inspection and non-automated artefact removal. In an 

explorative study by Cannard et al. [55], although EEGLAB 

was used alongside the BrainBeats plugin for heart-brain 

signal analysis, the platform does not support full integration 

with other physiological signals such as ECG or PPG. This is 

a real limitation for multimodal studies. 

Kalburgi et al. [56] used EEGLAB for microstate analysis 

in resting-state with eyes open and closed. However, no 

limitations were mentioned, although this approach usually 

requires very sensitive artefact detection and segmentation. 

Mondellini et al. [57], in a VR-based cognitive workload 

study, noted that EEGLAB does not provide non-linear 

features or brain connectivity, whereas indices such as MWLI 

can be affected by complex neural network interactions. 

Hsieh et al. [58], using EEG for the Flanker task, reported 

that the configuration and validation of artefacts is highly 

manual, and there is no effective automated validation for 

non-ocular artefacts. In the study of Niedernhuber et al. [59] 

with only 7 EEG channels, EEGLAB was still used for 

Hilbert transform and power analysis, but did not support 

automatic integration with phenomenological experience 

time-tracking (TET) methods, which are important in 

consciousness research. Vourvopoulos et al. [60] attempted 

to combine EEG with a VR environment for stroke 

rehabilitation, using a combination of complex 

preprocessing. They noted that EEGLAB does not support 

direct multimodal integration, such as data synchronization 

with fMRI or VR systems. Simfukwe et al. [61] again 

highlighted the issue of automation limitations, although the 

pipeline includes ICA, ASR, and relative PSD analysis, 

artefacts still cannot be fully eliminated automatically, and 

there is no support for integration of additional biomarkers. 

In the field of integration of wearable EEG and portable 

BCI systems, Niforatos et al. [62] evaluated two systems: 

BCIglass (3-channel) and Enobio 20 (20-channel). They used 

EEGLAB for thorough preprocessing, including ICA and 

ICLabel, but noted that the ICA process still had to be done 

manually, and that EEGLAB did not yet support direct 

integration with head-mounted displays (HMDs), and its 

application was limited to real-time scenarios. This highlights 

the challenges of EEGLAB in addressing the needs of today's 

portable and interactive technologies. Pasqualette et al. [63], 

in their emotion- and social context-based ERP study, 

showed that although EEGLAB is capable of comprehensive 

ERP preprocessing and analysis using CleanLine, PREP, and 

ICA, it requires additional integration for synchronisation 
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with eye-tracking systems, and artefact rejection is not yet 

fully automated. Similarly, Miras et al. [64] developed a 

dedicated tool outside of EEGLAB to calculate the fractal 

dimension index (FDI), pointing out that EEGLAB does not 

directly support advanced analytical features such as fractal 

modelling and source-space reconstruction without 

additional software. 

Rehabilitation-based clinical research by Kumari et al. 

[65] showed that although EEGLAB is effective in the 

analysis of ERSP and power bands of spinal cord injury (SCI) 

patients, the preprocessing process is still not automated, and 

EEGLAB is not capable of supporting real-time integration 

with functional electrical stimulation (FES) systems. These 

limitations hinder the utilizations of EEGLAB in the 

development of closed-loop systems or adaptive 

neurofeedback. Zur et al. [66] used EEGLAB to explore 

space perception and positive affect in an architectural 

context. Analyses included mu-rhythm, theta power, and 

dipole fitting, but preprocessing relied heavily on manual 

processes. The use of external plugins such as ICLabel also 

remains necessary, and the artefact detection process has not 

been automated, which is problematic in studies that rely on 

accurate spatial representation of EEG. In the domain of sleep 

and respiratory disorders, Zhang et al. [67] used 6-channel 

EEG from OSA (obstructive sleep apnoea) patients. They 

utilised EEGLAB for filtering and signal transformation, but 

noted that EEGLAB does not support full integration with 

PSG (polysomnography) systems, and many preprocessing 

stages are still semi-automated. This reflects the limitations 

of EEGLAB in multimodal sleep studies. 

Kim et al. [68] assessed the regional contribution of EEG 

to dementia classification using PSD and ASR, but stated that 

EEGLAB requires an external plugin for microstate analysis 

and the artefact detection process is not yet fully automated. 

Similar limitations were mentioned by Chen et al. [69] who 

studied migraine patients, where ICA had to be manually 

confirmed, the pipeline was not yet fully automated, and there 

was no integration of non-linear analysis. The study of 

Wojtecki et al. [70] in Alzheimer's patients added that 

although EEGLAB is used for spectral and entropy analysis 

(Tsallis), the artefact removal process is semi-automated, and 

EEGLAB does not yet support multimodal biomarker 

estimation such as MRI and cerebrospinal fluid (CSF). This 

limits its use for comprehensive neurodegenerative research. 

Finally, Li et al. [71] and Korochkina et al. [72] closed the 

series of studies with a focus on emotion regulation and 

semantic integration in memory. EEGLAB was used for 

frontal alpha asymmetry and ERP analyses, but both 

highlighted that artefacts are cleaned semi-automatically, and 

EEGLAB does not support more complex connectivity or 

integration semantic mapping features. The following is 

previous research related to the use of EEGLAB in EEG 

signal processing, as shown in Table II.

TABLE II.  PREVIOUS RESEARCH USING EEGLAB IN EEG SIGNAL PROCESSING 

No Author & Year Dataset Use of EEGLAB Limitations of EEGLAB 

1 
Hirth et al., 2020 

[18] 

15 healthy participants (upper limb 

motor performance); 64-channel 

Filtering; Resampling; Re-Referencing; ICA; 

dipole fitting 
Not explained 

2 
Jing et al., 2020 

[19] 

9 driver (driving fatigue state);  

8-channel EEG 
Preprocessing; ICA; PSD; topomap Not explained 

3 
Mahdid et al., 

2020 [20] 

1 subject (128-channel EGI;  

30-channel Cognionics; 24-channel 

wearable sensing; 14-channel 

EMOTIV; 8-channel OpenBCI) 

Filtering; Re-Referencing; Clean data; Power 

Spectral and Topography; Functional Connectivity 

ICA less effective for few channels; 

Biased towards high-density systems; 

Limited topoplot for uneven electrode 

distribution 

4 
Schade et al., 

2020 [21] 
8 participants (Habituation, Sham, 

Disruptive, Enhancing); 10-channel 
Re-referencing; Epoching data; artifact rejection; 

FFT; PSD 
Not explained 

5 
King et al., 2020 

[22] 
16 healthy subjects (normal vs. time 

pressure); 34-channel 
Filtering; downsampling; artifact rejection; ICA; 

Dipole fitting; ERSP; topography; time-frequency 
Analysis is not real-time; artifact 

detection remains manual 

6 
Chen et al., 2020 

[23] 

Mesial temporal lobe epilepsy 

patient; 21-channel ictal EEG 

Data visualization; preprocessing; 

ICA; time/frequency decompositions 

ICLabel not suitable for non-ICA; 

Difficult to detect multisource artifacts; 

Less effective for few-channel EEG 

7 
Moliadze et al., 

2020 [24] 
14 ASD and 12 neurotypical controls ICA preprocessing (extended infomax) Not explained 

8 
Cancino et al., 

2021 [25] 

Public dataset from OpenNeuro.org; 

70-channel 

ICA; preprocessing; topoplot; nsgportal plug-in; 

integration with HPC/NSG 

Not optimal for big data; Slow 

upload/download; High parallel 

overhead; Does not support interactive 

processes 

9 
Piper et al., 2021 

[26] 

34 Italian participants (stimulus 

alcohol drinks with different calorie 
content); 16-channel 

Signal preprocessing (filtering, artifacts); Valence 

calc la ion  α & β  ower ; Signal decom osi ion; 
EEG with wavelets 

Not explained 

10 
Zhou et al., 2021 

[27] 
71 Herpes Zoster (HZ) patients and 

71 healthy controls; 16-channel 
Bandpass filter; rereferencing; artifact removal; 

ICA 
Not explained 

11 
Mehmood et al., 

2021 [28] 

60 children (30 control, 30 special); 

14-channel 

Bandpass filtering; ICA; ERP generation & LPP 

analysis; Brain cluster visualization & grand 

average study 

Not explained 

12 
Thompson et al., 

2021 [29] 

8 young adults (Anglophone); 2 

channels on parietal-temporal 

Filtering; ICA; Sleep spindle analysis; ERSP; 

Artifact detection & baseline correction; 

integration with SleepSMG & FieldTrip 

EEGLAB integration with other 

toolboxes (SleepSMG & FieldTrip) is 

still manual 

13 
Niu et al., 2022 

[30] 

30 NSZ patients, 32 ED patients, 34 

healthy; 64-channel 

Downsampling; filtering; ICA; artifact removal; 

microstate analysis; topographic clustering (A-F); 

calculation of coverage; occurrence; duration; 

scale-free dynamics analysis with Hurst exponent 

Not explained 

14 
García et al., 

2022 [31] 
OSF public dataset; 65-channel Data prepocessing 

Not for multivariate decoding; Does not 
support BIDS-EEG; Distortion-prone 

filter; No nested CV/blind analysis 

15 
Pozharliev et al., 

[32] 
112 business students; 24-channel 

Filtering; ICA; Segmentation; Frontal theta 

spectrograms 
Not explained 
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No Author & Year Dataset Use of EEGLAB Limitations of EEGLAB 

16 
Fuhrmeister et al. 

[33] 

45 native German speakers; 61-

channel 

Filtering; ICA; eye artifacts (SASICA); channel 

interpolation 
Not explained 

17 
Mushtaq et al. 

[34] 

29 participants (Rapid arm-reaching 

task); 64-channel 

Filtering; re-referencing; downsampling; ICA 

(Infomax); Automatic artifact rejection; Epoching 

& baseline correction; integration with the 

Fieldtrip toolbox 

Not explained 

18 Lopes et al. [35] 

25 epilepsy patients (EPILEPSIAE); 

19-channel; 30 healthy subjects 

(BASE); 60-channel 

Bandpass filter; notch filter; extended Infomax 

ICA; time-series IC; power spectrum density 

(PSD); topoplot; Labeling IC 

EEGLAB ICLabels do not use time-

series ICs, thus reducing accuracy 

19 
Harwood et al. 

[36] 
58 children aged 24-48 months; 128-

channel 
Filtering; PREP pipeline; Rereferencing; Epoching 

& baseline correction; ERP analysis 
Not explained 

20 Bi et al. [37] 
24 surgical patients (propofol, 

sevoflurane, ketamine); 256-channel 

Filtering; ICA; Artifact removal; Coherence 

Analysis (CA); Sparse Representation (SR) 
Less efficient for 256-channel analysis 

21 
Pellegrini et al., 

2023 [38] 
Pseudo-EEG simulation 

Integration with ROIconnect for connectivity 

analysis and visualization of EEG data 
Not explained 

22 
Caetano et al., 

[39] 

3 groups of healthy subjects 

(Resting-state (RS), Eyes 

Open/Closed (EO/EC), Motor 

Imagery (MI)); 32-channel 

Artifact Removal (Gradient & Pulse Artifact); 

integration with AAS (Average Artifact 

Subtraction) 

Inefficient for real-time processing 

23 Bailey et al. [40] 
127 participants (Go-Nogo ERP 

task); 64-channel 

Filtering; ICA; epoching; ERP visualization; 

ICLabel; PREP; wICA; MWF 

ICA (Infomax/FastICA) on EEGLAB 

is less effective for ERP data <1 Hz 

24 Rashmi et al. [41] 

UCI EEG Eye State dataset; Private 

EEG data (yoga and relaxation 

sessions) 

EEG preprocessing; Signal visualization 
Not beginner-friendly (not a simple 

GUI) 

25 Coyle et al. [42] 
58 participants (30 mTBI, 28 

control); 64-channel 
Preprocessing; Spectral power (FFT) and 

connectivity (wPLI) analysis 
Not explained 

26 
Simfukwe et al. 

[43] 

890 subjects  

(269 HC, 356 MCI, 265 AD) 
FFT; ICA; ASR 

Manual dominant preprocessing  

(e.g. ICA, ASR) 

27 
Jianbiao et al. 

[44] 

20 subjects (10 tinnitus patients &  

10 healthy subjects); 64-channel 
Notch filter; ICA; re-referencing; segmentation 

ICA needs manual curation; Does not 

support advanced non-linear analysis 

28 Hbibi et al. [45] 22 ICU coma patients; 14-channel 

ICA (AMICA algorithm); EEG Topography Plot; 

ICLabel / MARA; Cleanline plugin; REGICA / 

AAR plugin 

Needs visual/manual intervention for 

certain artifact removal; Does not yet 

support full multifractal analysis. 

29 Gao et al. [46] 
20 experienced meditators and 18 lay 

novice meditators; 128-channel 
FMRIB plugin (AAS method); ICA; FFT; STFT 

Cannot be used for real-time artifact 

reduction; requires manual pre-processing 

30 
Simfukwe et al. 

[47] 

534 subjects (269 HC and 265 AD); 

19-channel 

Bandpass filter; ICA; Epoching; Referencing; 

coherence analysis; PSD 

Less able to describe functional 

coherence between brain regions 

31 Zhou et al. [48] 
50 subjects (24 migraine patients & 

26 healthy controls); 16-channel 

Band-pass filter; Re-referencing; AAR; EEG data 

segmentation 

Analysis is not real-time; artifact 

detection remains manual 

32 Wu et al. [49] 
29 stroke patients (with and without 

fatigue); 64-channel 

ICA; band-pass filter; segmentation; Re-

referencing 

Manual visual inspection; 

Segmentation & static noise detection; 

Does not support direct connectivity 
analysis 

33 
Mazzeo et al. 

[50] 
99 SCD patients; 64-channel 

PREP pipeline + ICA; ICLabel; Epoching & 

Averaging; PSD; Topographic Microstates; Data 

Referencing; Segmentation & Interpolation 

Reliance on visual inspection; Not 

fully automated; Does not yet support 

live machine learning 

34 Kawar et al. [51] 23 ADHD children; 32-channel 

EEG Preprocessing; FFT; Electrode-specific 

analysis; Spectral Parameterization; Bandwidth & 

Aperiodic Exponents 

Lack of advanced automated artifact 

integration 

35 Knoph et al. [52] 
37 subjects (17 CP patients with pain 

+ 20 healthy controls; 62-channel 

Filtering; Re-referencing; ICA; ICALabel; 

Downsampling; ERP Extraction 

Visual inspection dependency; 

limitations of non-linear EEG analysis 

36 Zhao et al. [53] 
132 adolescents (107 MDD + 25 

HC); 64-channel 

Band-pass filter; ICA; Segmentation & epoching; 

ERP extraction; Topography and averaging 

Manual and Visual ICA; Limitations of 

Real-time Analysis; Dominance of 

Linear ERP Analysis 

37 
Taberna et al. 

[54] 

16 subjects (Resting state, visual 

attention task, motor execution task); 
128-256 channels 

Bandpass filter; BSS; ICA; ERP analysis 

Less suitable for large datasets; Manual 

visualization & inspection; Artifact 
removal not fully automated 

38 
Cannard et al. 

[55] 

1 subject (NEMAR platform); 63-

channel 

Filtering; re-referencing; ICA; ASR; BrainBeats 

Plugin; Entropy & Complexity Estimation 

Does not support combined EEG-

ECG/PPG analysis; Does not 

automatically remove cardiac artifacts 

39 
Kalburgi et al. 

[56] 

34 participants (Resting-state EEG: 

eyes open & eyes closed) 

EEG Preprocessing; Microstate map 

identification; Backfitting; Topography 
Not explained 

40 
Mondellini et al. 

[57] 

27 healthy participants (Resting-state 

and cognitive tasks); 30-channel 

Bandpass Filter; ASR; ICA; ICLabel; Rereferencing; 

Spectral Analysis; MWL Index Calculation 

EEGLAB does not cover non-linear 

features or brain connectivity 

41 Hsieh et al. [58] 
58 students (Flanker Task); 64-

channel 

High-pass filter; extended-infomax ICA; artifact 

rejection; Eyeblink detection; Morlet wavelet 

transform; ROI 

Reliance on manual ICA; Reliance on 

manual configuration; No validation of 

non-ocular artifacts 

42 
Niedernhuber et 

al. [59] 
1 subject; 7-channel 

EEG preprocessing; semi-automatic artifact 

rejection; Hilbert transform; power spectral analysis 

Does not support automatic TET 

integration 

43 
Vourvopoulos et 

al. [60] 

4 chronic stroke patients (motor 

imagery (MI) + motor observation 
(MO) in VR); 32-channel 

Downsampling; bandpass filter; channel 

interpolation; re-referencing; ASR; ICA; Epoching 
& Segmentation; ERSP 

Does not support direct multimodal 
EEG-fMRI 

44 
Simfukwe et al. 

[61] 

890 subjects (269 HC, 356 MCI, 265 

AD); 19-channel 
Filtering; ASR; ICA; Relative PSD 

Artifacts not yet fully eliminated 

automatically; Not yet integrative 

multimodality 

45 
Niforatos et al. 

[62] 

34 healthy participants; 3-channel 

(BCIglass); 20-channel (Enobio 20) 

High-pass & notch filtering; Re-referencing; Bad 

channel rejection; Channel interpolation; ICA; 

ICLabel plugin; Epoching; Time-frequency 

decomposition; Welch's PSD 

High manuality in ICA; Does not 

support direct HMD integration; 

Limited to real-time applications 
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No Author & Year Dataset Use of EEGLAB Limitations of EEGLAB 

46 
Pasqualette et al. 

[63] 
74 participants; 32-channel 

Bandpass Filtering; CleanLine (PREP pipeline); 

ICA (Infomax); Epoched Data; Re-referencing; 

Automatic Artifact Rejection; ERP Component 

Analysis 

Need additional integration for eye-

tracking; Artifact rejection not entirely 

automatic 

47 Miras et al. [64] 
18 (TMS-EEG) &  

31 (resting-state EEG) 
EEG preprocessing; Source modeling pipeline 

Does not support FD analysis directly; 

requires additional software for source 

modeling 

48 Kumari et al. [65] 
10 subacute spinal cord injury (SCI) 

patients; 64-channel 
EEG Preprocessing; ERSP Analysis; Frequency 

Band Analysis 

Preprocessing is not fully automated; 

Does not support real-time FES 
integration 

49 Zur et al. [66] 31 healthy participants; 64-channel 

ICA; ICLabel; CleanRawData; interpolation; 

baseline; Mu-Rhythm & Theta power; ERSP via 

Morlet wavelet; dipole fitting via DIPFIT 

Manual dependent preprocessing; Need 

external plugin for ICA labeling; 

Artifact detection not fully automated 

50 Zhang et al. [67] 
103 OSA patients (27 mild, 30 

moderate, 46 severe); 6-channel 

Bandpass Filtering; ICA; Threshold Artifact 

Manual; Hilbert Transform; EEGfilt Function 

Manual and semi-automated 

preprocessing; Does not support full 

PSG-EEG integration 

51 Kim et al. [68] 
199 participants (75 IGD, 57 AUD, 

67 HC); 64-channel 

CleanLine plugin; bandpass filtering; artifact 

subspace reconstruction; wavelet denoising; ICA + 

ICLabel plugin; Epoching & artifact thresholding 

Need for external plugins for 

microstate; Artifact detection  

not fully automated 

52 Chen et al. [69] 
52 migraine patients & 34 healthy 

controls; 64-channel 

Bandpass filter; baseline correction; ICA;  

PSD; ERP 

ICA needs manual confirmation; Lack 

of non-linear analysis integration; 
Pipeline not fully automated 

53 
Wojtecki et al. 

[70] 
10 Alzheimer's patients; 21-channel 

Filtering; Average referencing; Data 
segmentation; Spectral analysis (FFT);  

Tsallis Entropy analysis 

Artifacts are removed semi-
automatically; Does not yet support 

multimodal biomarker estimation 

54 Li et al. [71] 

43 participants (22 long-term 

Baduanjin + 21 short-term); 32-

channel 

Band-pass filtering; Re-referencing; Epoching; 

FFT transform; Frontal Alpha Asymmetry  

(FAA) Analysis 

Artifact cleaning is semi-automated 

55 
Korochkina et al. 

[72] 

32 subjects (semantic priming task); 

64-channel 

Filtering; re-referencing; Epoching; ICA;  

ERP Analysis 

Does not support advanced analysis 

such as connectivity mapping in 

semantic integration 

 

IV. DISCUSSION 

A. Preprocessing Features of EEGLAB 

EEGLAB provides a complete and effective set of 

preprocessing features to prepare EEG data before further 

analysis, as shown in Fig. 4. The first step in preprocessing 

generally starts with a filtering stage to remove distracting 

noise and artefacts [73]. EEGLAB has a variety of filter 

options, including a high-pass filter to eliminate low-

frequency components such as drift, a low-pass filter to 

reduce muscle noise that appears in high frequencies, a 

band-pass filter to preserve the signal in the relevant 

frequency range, and a notch filter that is specifically used 

to remove electrical noise at 50 or 60 Hz [74]. After the 

filtering stage, a re-referencing step is performed to 

determine the appropriate reference for a more accurate 

interpretation of the EEG data [75]. EEGLAB provides 

several re-referencing options, including average 

referencing which uses the average activity of all electrodes, 

linked-mastoid referencing which utilises the mastoid 

electrodes behind the ear, and custom referencing which 

allows researchers to select specific electrodes as references 

according to research needs [76]. 

To improve data quality, EEGLAB provides 

comprehensive artifact rejection features, both manually and 

automatically. In the manual approach, researchers can 

visually inspect the EEG data and mark contaminated epochs 

[77]. Automatically, EEGLAB is able to detect artefacts 

based on parameters such as threshold amplitude and 

abnormal kurtosis [78]. The artifact subspace reconstruction 

(ASR) plugin is also available as an advanced solution to 

remove large artefacts such as body motion or heavy 

electromagnetic interference, by reconstructing the EEG 

signal from an artefact-free subspace [79]. Furthermore, the 

bad channel detection and interpolation feature allows users 

to identify problematic electrodes-for example due to 

excessive noise or poor electrode contact-and correct them 

through interpolation of neighbouring electrodes with the 

spherical interpolation method [80]. EEGLAB also supports 

down sampling or resampling to lower the sampling frequency 

of EEG data from high to lower, in order to reduce the 

computational burden without sacrificing signal quality [81].

 

Fig. 4. Preprocessing features of EEGLAB 
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The next stage is segmentation or epoching, which is the 

cutting of continuous EEG data into short segments based on 

a specific event or stimulus, which is important for analyses 

such as event-related potentials (ERP) [82]. Each of these 

epochs then undergoes baseline correction, which is the 

process of subtracting the average EEG activity from the 

baseline period before the stimulus, so that the EEG response 

obtained truly reflects the stimulus-related activity 

accurately, rather than being the result of signal fluctuations 

or baseline drift [83]. With this set of preprocessing features, 

EEGLAB is able to effectively improve the quality of EEG 

signals, making the data ready for advanced analyses such as 

spectral analysis, functional connectivity, or brain activity 

source estimation [84]. This makes EEGLAB an essential 

toolbox in EEG research that is flexible, efficient, and 

reliable. 

B. Independent Component Analysis (ICA) 

The independent component analysis (ICA) feature in 

EEGLAB is one of the main advantages of this toolbox that 

enables in-depth analysis of EEG data by separating the 

signal into independent components [85]. ICA effectively 

separates the original EEG activity from artefacts that often 

appear in EEG recordings such as ocular artifacts, muscle 

artifacts, heart rate artefacts and other noise. The ICA process 

works by assuming that the measured EEG data is a linear 

mixture of several mutually independent activity sources, 

then the ICA algorithm separates these sources so that users 

can selectively identify and remove artefact sources without 

losing important information from the actual brain activity. 

Furthermore, EEGLAB provides a complementary feature 

in the form of ICLabel plugin that further enhances the 

effectiveness and efficiency of ICA. ICLabel uses a machine 

learning approach to automatically classify ICA components 

into specific categories such as brain (brain activity), muscle 

(muscle artefacts), eye (eye blink or eye movement artefacts), 

heart (heart rate artefacts), line noise (noise from the power 

grid), channel noise (bad channel-related artefacts), and other 

(categories that do not fit into these classifications) [86]. With 

this automatic classification, ICLabel simplifies the process of 

identifying components containing artefacts, while reducing 

reliance on subjective and time-consuming manual inspection. 

EEGLAB users can immediately decide which components 

should be discarded based on the classification probabilities 

provided by the plugin, thus improving the accuracy and speed 

of EEG data preprocessing [85]. 

EEGLAB also presents an advanced feature known as 

Dipole Fitting through the DIPFIT plugin. This feature aims 

to estimate the location of the source of brain activity from 

the independent components that have been generated by 

ICA. Using realistic or standard head models available in 

EEGLAB, DIPFIT calculates the most appropriate dipole 

(electrical activity source) position for each independent 

component [86]. This dipole location information is very 

useful for studies that require spatial analysis of brain activity 

sources, such as cognitive and neuroclinical studies that want 

to know precisely which brain areas are involved in a 

particular mental process or disease [87].  

These three ICA features in EEGLAB (basic ICA 

processing, ICLabel for automatic classification, and DIPFIT 

for brain activity source location estimation) together provide 

an integrated solution for preprocessing and analysis of 

complex EEG data [88]. Thus, EEGLAB is not only able to 

effectively clean EEG data from artefacts, but also provide 

additional insights into the spatial origins of brain activity 

that are more detailed, in-depth and scientifically and 

clinically meaningful [89]. 

C. EEG Data Analysis 

EEGLAB provides a variety of powerful and flexible 

EEG data analysis features to explore various aspects of brain 

activity, one of which is time-frequency analysis, as shown in 

Fig. 5. In this feature, EEGLAB offers approaches such as 

short-time Fourier transform (STFT) and wavelet transform 

[90]. STFT allows simultaneous analysis of EEG spectral 

dynamics in the time and frequency domains by breaking the 

EEG signal into small segments that are analyzed 

independently [91]. Wavelet transform, on the other hand, is 

a more flexible method as it is able to adjust the time-

frequency resolution depending on the frequency being 

analyzed, which is ideal for capturing transient activity or 

brief changes in brain activity that are not obvious using 

traditional frequency methods [92]. The combination of 

these two techniques in EEGLAB enables in-depth analysis 

of EEG frequency changes that are closely related to 

cognitive processes as well as specific pathological 

conditions.  

In addition to spectral analysis, EEGLAB is also widely 

known for its ability to analyze Event-Related Potentials 

(ERP). ERP is an EEG response obtained by averaging EEG 

segments to a certain stimulus or event. EEGLAB provides 

full features for preprocessing, epoching, averaging, as well 

as visualization of ERPs that allow researchers to clearly see 

specific EEG components such as N100, P300, or N400 

associated with cognitive functions such as attention, 

memory, and language processing [93]. 

 

Fig. 5. EEG data analysis 
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In addition to ERP, EEGLAB also offers the event-related 

spectral perturbation (ERSP) analysis feature. ERSP is an 

advanced analysis that explores changes in EEG spectral 

power within a certain time after a stimulus, allowing users 

to see more complex dynamics of brain activity, including 

increases (event-related synchronization, ERS) and decreases 

in power (event-related desynchronization, ERD) at certain 

frequencies [94]. 

Another important feature is inter-trial coherence (ITC), 

which evaluates the phase consistency of EEG activity to a 

stimulus across multiple trials. ITC is very useful in 

understanding the synchronization of neural activity at the 

neuronal level associated with stimulus processing or certain 

cognitive processes [95]. ITC allows EEGLAB users to 

evaluate whether EEG activity at a particular frequency 

consistently appears at the same time after a stimulus, which 

is a strong indicator of an organized brain response to a 

particular stimulus [96].  

Power spectral density (PSD) is also a widely used EEG 

analysis feature in EEGLAB. PSD provides a complete 

picture of the power distribution of the EEG signal at various 

frequencies, helping to identify different patterns of activity 

between specific conditions or groups of subjects [97]. PSD 

is also often used to assess certain clinical conditions, such as 

epilepsy or sleep disorders, which exhibit distinctive EEG 

spectral activity patterns at specific frequencies. 

Complementing the PSD feature, EEGLAB provides 

powerful spatial visualization capabilities through 

topographic mapping (topoplot) [98]. Topoplot allows users 

to visualize the spatial distribution of EEG activity across the 

surface of the head in an intuitive and informative manner. 

This visualization is critical to understanding where exactly 

specific brain activity is occurring, thus facilitating the 

interpretation of EEG research results [99]. 

Finally, EEGLAB also provides advanced features for 

brain connectivity analysis through additional plugins such as 

ROIconnect and source information flow toolbox (SIFT). 

The cross-spectral coherence and connectivity analysis 

features allow users to explore the functional relationships 

between different brain regions based on EEG signals [100]. 

Using ROIconnect, researchers can evaluate interactions 

between different brain regions, while the SIFT plugin is able 

to provide more sophisticated analysis of the direction of 

information flow between brain regions (directional 

connectivity), such as Granger causality. Thus, the EEG data 

analysis features in EEGLAB not only facilitate the 

interpretation of local brain activity, but also provide deep 

insights into how these regions dynamically interact within 

the overall brain network [101]. 

D. Advanced Analysis & Plugin Support on EEGLAB 

EEGLAB provides a variety of advanced analysis 

features supported by an extensive plugin system, one of 

which is microstate analysis. Microstate analysis, accessible 

through the Microstate plugin in EEGLAB, allows 

researchers to evaluate the temporal patterns underlying the 

dynamics of resting-state EEG activity. Microstates are often 

re erred  o as “cogni i e a oms”, where global EEG ac i i y 

can be grouped into a small number of topographic patterns 

that are stable over short periods of time, typically tens to 

hundreds of milliseconds [102]. EEGLAB provides tools to 

automatically extract microstates from EEG data, calculating 

metrics such as duration, frequency of occurrence, coverage, 

and transitions between microstates. Microstate analysis is 

very useful in exploring normal brain function as well as 

changes in neuropsychiatric conditions such as depression, 

schizophrenia, or dementia [103].  

In terms of efficient and standardized EEG artifact 

cleaning, EEGLAB provides a comprehensive pipeline 

through several advanced plugins. One of the most popular 

pipelines is the PREP Pipeline, which offers a systematic and 

standardized preprocessing approach, including robust re-

referencing, bad channel detection, channel interpolation, and 

filtering [104]. This pipeline is essential in ensuring 

consistency between subjects and EEG recording sessions, 

making the EEG analysis results more reliable. Another very 

important plugin in artifact cleaning is CleanLine, which 

effectively removes line noise artifacts from 50 or 60 Hz 

power grids without damaging the original EEG signal. 

CleanLine uses a regression-based adaptive approach so as to 

maintain the integrity of the original EEG data [105]. 

In addition, EEGLAB provides specialized plugins such 

as multiple artifact rejection algorithm (MARA), ADJUST, 

and semi-automatic selection of independent components for 

artifact correction (SASICA), which are used in the context 

of ICA analysis to aid automatic identification of artifact 

components that are difficult to detect manually [106]. 

MARA uses machine learning to automatically classify 

artifact components with a high degree of accuracy, while 

ADJUST specifically focuses on ocular artifacts and eye 

movements, and SASICA provides a semi-automated 

approach that helps users evaluate ICA components visually 

and quantitatively [107].  

With this combination of plugins, EEGLAB users can 

manage artifacts more accurately, efficiently, and 

objectively. Artifact subspace reconstruction (ASR) is one of 

EEGLAB's flagship features specifically designed to 

automatically address heavy artifacts, such as head 

movements or other large technical artifacts [108]. ASR 

works by detecting and replacing damaged or artifact-

contaminated EEG signal segments using stable and clean 

EEG data subspaces. This method is very effective in dealing 

with large, spontaneous artifacts that are difficult to 

overcome with traditional cleaning methods, making it 

particularly suitable for use on EEG data recorded in 

naturalistic or free-motion situations [109]. 

EEGLAB also provides limited features for multimodal 

integration, which allows users to combine EEG data with 

other modalities such as fMRI or physiological signals such as 

photoplethysmography (PPG) [110]. This integration is done 

through an additional plugin that enables synchronization and 

combined analysis between modalities [111]. Although this 

multimodal integration feature is limited and requires 

additional configuration, EEGLAB remains a good choice for 

researchers who want to perform combined analysis of EEG 

with neuroimaging data or other physiological data, especially 

in studies that require cross-validation between modalities 

[112]. The following are some other features of the advanced 

analysis & plugin support in EEGLAB, as shown in Table III. 
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TABLE III.  FEATURES OF ADVANCED ANALYSIS & PLUGIN SUPPORT IN EEGLAB 

Features / Plugins Description Key Benefits 

SIFT (Source Information Flow 
Toolbox) [113] 

Plugins for dynamic connectivity analysis between 
brain sources using Granger Causality, PDC. 

Reveals the direction and strength of information 

flow between brain areas. Suitable for 

neurodynamic studies. 

ROIconnect [114] 
Plugin for connectivity analysis between Regions of 

Interest (ROI) in source-reconstructed EEG data. 
Provides region-specific functional connectivity 

mapping of the brain. 

DIPFIT (Dipole Fitting Plugin) [115] 
Plugin to map ICA components to brain sources with 

dipole location estimation. 

Provides spatial information from EEG signals for 

localization studies of brain activity. 

ICLabel [116] 
Machine learning plugin for automatic classification 
of ICA components into categories (Brain, Eye, and 

Muscle). 

Assists in quick and accurate selection and cleaning 

of ICA components. 

NFT (Neuroelectromagnetic Forward 
Head Modeling Toolbox) [117] 

Plugin for creating realistic head models from MRI 
data or templates. 

Improves source localization accuracy with a 
personalized head model. 

ERPLAB [118] 
EEGLAB companion toolkit for Event-Related 

Potentials (ERP) analysis. 

Provides ERP-specific workflows such as 

averaging, binning, and measurement window. 

BCILAB [119] 
Toolkit for building and evaluating EEG-based 

Brain-Computer Interface pipelines. 
Supports real-time classification and interactive 

BCI applications. 

FIRfilt [120] 
Additional plugins for filtering EEG signals using 

high-precision Finite Impulse Response (FIR). 

Provides better control over EEG filter 

characteristics. 

FieldTrip Integration [121] 
EEGLAB can be integrated with the FieldTrip toolbox 

for advanced analysis and nonparametric statistics. 
Extends the functionality of EEGLAB into the 

realm of advanced statistics and frequency analysis. 

MoBILAB [122] 
Plugin for mobile EEG analysis including motion 

detection and IMU integration. 

Useful for real-world or naturalistic EEG 

experiments. 

 

Finally, EEGLAB provides support for modern standard 

data formats through an additional plugin called bids-

MATLAB-tools, which supports the brain imaging data 

structure for EEG (BIDS-EEG) format. This format is 

designed to facilitate the storage, management, and sharing 

of EEG data in a systematic, open, and standardized manner. 

With the support of BIDS, EEGLAB is able to improve the 

interoperability and reproducibility of EEG data between 

laboratories and research platforms, helping the EEG 

community to implement open science principles more easily 

and efficiently [123]. 

E. Interface and Extensions 

EEGLAB is a popular MATLAB-based EEG analysis 

software, in part because it has an intuitive and user-friendly 

graphical user interface (GUI). EEGLAB's GUI is designed 

to make it easy for users of various skill levels, ranging from 

beginners to advanced users, to perform EEG analysis 

without having to have in-depth expertise in MATLAB 

programming [124]. Through its GUI, EEGLAB presents 

various important features such as preprocessing, filtering, 

independent component analysis (ICA), EEG data 

visualization, segmentation, to advanced analysis such as 

ERSP and top plot, in a clear and structured menu and button 

format. With this point-and-click approach, users can easily 

access, run, and monitor each stage of the analysis 

transparently, as well as explore the data visually and 

interactively, significantly reducing the risk of errors and 

improving analysis efficiency [125].  

In addition to its GUI, EEGLAB offers full support for 

scripting through the MATLAB programming language. This 

scripting feature allows users who have more complex 

analysis needs and high customization to perform automated 

and batch processing of EEG data. By using scripting, users 

can efficiently run repetitive analysis on large datasets 

without significant manual intervention, improving the 

consistency and reproducibility of analysis results [126]. 

EEGLAB provides clear and extensive documentation on the 

MATLAB commands associated with each of its GUI 

features, making it easy for users to integrate EEGLAB 

scripts into their automated workflows, such as batch 

analysis for large experiments or multi-center collaborative 

projects [127]. 

One of EEGLAB's key advantages is its extensive and 

growing plugin system, supported by an active global 

community. To date, there are hundreds of additional plugins 

developed by EEGLAB's extensive user community, 

covering a wide range of advanced analyses, such as brain 

functional connectivity, microstate analysis, multimodal 

integration, machine learning classification, and EEG source 

analysis [128]. Plugins such as ICLabel, DIPFIT, MARA, 

SIFT, CleanLine, ROIconnect and others extend EEGLAB's 

analytic capabilities far beyond its basic features, allowing 

users to access the latest methodologies in EEG research 

without the need to develop their own algorithms. EEGLAB's 

plugin system is also well designed so that users can easily 

add or remove plugins according to their needs via the GUI 

or programmatically via MATLAB scripting [129].  

Finally, EEGLAB offers flexibility in terms of importing 

and exporting EEG data, supporting various common data 

formats that are widely used in the international EEG 

community. The main format of EEGLAB itself is *.set, 

which includes a complete data structure with information 

about the EEG data, electrode locations, event markers, and 

analysis results [130]. EEGLAB also provides extensive 

support for other formats such as European Data Format 

(EDF), BioSemi Data Format (BDF), Comma-Separated 

Values (CSV), and MATLAB's *.mat format. Support for 

these formats allows EEGLAB users to easily integrate with 

other EEG software, share data with collaborators from 

various institutions, and maintain compatibility with different 

EEG acquisition systems [131]. Thus, the combination of an 

intuitive GUI, MATLAB scripting for automation, extensive 

system plugins, and extensive data import/export capabilities 

make EEGLAB a highly flexible, effective, and user-friendly 

software for modern EEG analysis [132]. 
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V. PROSPECTS AND LIMITATIONS 

A. Prospects of EEGLAB in EEG Signal Processing 

EEGLAB is a software that has bright prospects in EEG 

signal processing, especially due to the growing needs of 

neuroscience, neurotechnology, and clinical research. The 

main prospect of EEGLAB in EEG processing lies in its 

ability to provide a flexible and constantly evolving analysis 

platform, especially thanks to the support of an extensive and 

active open-source community. This community support 

allows EEGLAB to continue to receive regular updates, 

introduce the latest analysis methods, and support the needs 

of users in various research fields that require complex EEG 

analysis, such as neuromodulation, neurofeedback, brain-

computer interface (BCI), and neuropsychiatric and 

neurodegenerative research [133]. 

In the field of cognitive neuroscience, EEGLAB is 

particularly promising as it offers a wide range of advanced 

analysis techniques that are constantly evolving. Techniques 

such as independent component analysis (ICA), event-related 

spectral perturbation (ERSP), microstate analysis, and 

functional connectivity analysis provide deep insights into 

the basic mechanisms of the brain [134]. With the integration 

of additional plugins such as DIPFIT and SIFT, EEGLAB 

enables accurate spatial source analysis as well as brain 

network connectivity evaluation, helping researchers explore 

neuronal activity at a more detailed and realistic level. In the 

future, EEGLAB is predicted to continue adopting more 

advanced analysis approaches such as dynamic modeling, 

integration of machine learning for EEG pattern 

classification, as well as complex brain network analysis that 

is increasingly required by the scientific community [135]. 

In the clinical context, EEGLAB has strong prospects to 

support the diagnosis and monitoring of various neurological 

and neuropsychiatric conditions. EEGLAB's ability to 

separate artifacts with advanced methods such as artifact 

subspace reconstruction (ASR) and automated ICA such as 

ICLabel enables the resulting clinical EEG data to be of high 

quality, artifact-free, and ready for more accurate clinical 

interpretation [136]. Going forward, the integration of 

EEGLAB with machine learning and artificial intelligence 

(AI) technologies for automatic classification of pathological 

conditions, such as epilepsy, depression, dementia, or 

ADHD, will further expand, improving the efficiency of 

EEG-based diagnostics. In addition, additional plugins that 

support multimodal signal analysis such as the integration of 

EEG-fMRI, EEG-NIRS, or EEG with other physiological 

data will further expand the utility of EEGLAB in modern 

clinical applications [137]. 

Another important prospect for EEGLAB is the 

expansion of EEG big data analysis capabilities. With the 

increasing popularity of EEG studies with large numbers of 

subjects or longitudinal collection of EEG data, EEGLAB is 

predicted to further increase support for automated, 

standardized, and reproducible large-scale data analysis 

[138]. Support for standardized formats such as brain 

imaging data structure (BIDS-EEG) strengthens EEGLAB's 

position in the open science and big data community, 

enabling more efficient international collaboration and easier 

exchange of EEG data across institutions. EEGLAB is also 

expected to continue developing more intuitive MATLAB-

based interfaces and scripting to improve the efficiency and 

automation of large batch analysis, making it a flagship 

platform for future global EEG research [139]. 

In addition, EEGLAB's prospects in the field of EEG 

wearable technology and brain-computer interface (BCI) are 

also very promising. EEGLAB is predicted to further develop 

towards better compatibility and integration with portable 

and real-time EEG devices, which are currently in increasing 

demand both in the context of research and clinical 

applications [140]. The development of features for real-time 

EEG processing and direct integration with head-mounted 

displays (HMDs), virtual reality (VR), augmented reality 

(AR), and neurofeedback systems will open up many new 

opportunities in neurological rehabilitation, cognitive 

training, or neuroergonomic applications [141]. 

Thus, EEGLAB's prospects in EEG signal processing are 

very bright, supported by a combination of technological 

innovation, analysis flexibility, community support, 

integration of the latest analytical methods, as well as 

commitment to open science standards and interoperability of 

EEG data. EEGLAB is predicted to remain the software of 

choice in EEG analysis across a wide range of disciplines, 

from basic neuroscience to clinical applications and advanced 

technologies, in the future. 

B. Limitations of EEGLAB in EEG Signal Processing 

While EEGLAB is a powerful, flexible and popular EEG 

analysis software, there are some limitations that users need 

to understand in the context of EEG signal processing. One 

of the main limitations of EEGLAB is the still significant 

reliance on manual and semi-automated processes in some 

preprocessing stages, particularly in artifact detection and 

removal [142]. While plugins such as ICLabel, ASR, 

ADJUST and MARA have been developed to automate most 

of these processes, EEGLAB still requires manual visual 

inspection and verification by the user in most cases. This 

increases the risk of subjectivity, inconsistency between 

users, and adds to the time and effort required, especially in 

large EEG datasets or in studies with many subjects [143]. 

Another limitation of EEGLAB lies in the spatial source 

modeling-based analysis. Although the DIPFIT plugin 

provides source location estimation of brain activity, the 

spatial resolution provided by EEG is inherently low when 

compared to other brain imaging methods such as fMRI or 

MEG [144]. In addition, dipole fitting in EEGLAB relies 

heavily on the provided head model and may not be optimal 

if the standardized head model is less accurate for a particular 

subject. This could potentially lead to inaccuracies in EEG 

activity source location estimation, especially in the case of 

studies that require high spatial resolution or highly precise 

activity source localization [145]. 

EEGLAB also has limitations in terms of multimodal data 

integration. While several external plugins are available for 

integration with other modalities such as fMRI, NIRS, or 

additional physiological signals (ECG, PPG), these 

integrations are not native and are generally still limited in 

both flexibility and efficiency. Additional configurations are 

often complex and require advanced technical knowledge 
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from the user, which may hinder novice users or users from 

clinical fields who do not have a strong technical background 

[146]. In addition, real-time integration features for 

applications such as brain-computer interface (BCI) and 

neurofeedback in EEGLAB are still limited, reducing its 

potential in real-time and interactive usage scenarios. 

Another important limitation is related to the 

computational efficiency and scalability of EEGLAB in the 

face of large-scale or high-density EEG data analysis [147]. 

Analysis processes such as ICA, time-frequency analysis, and 

dipole fitting can be time-consuming and demand large 

computational resources, especially if the dataset is very large 

or consists of many subjects [148]. EEGLAB, being 

MATLAB-based, is inherently not as optimized as other 

platforms that use faster programming languages such as 

Python, which naturally favor parallel processing or effective 

use of GPUs. This can be a significant bottleneck when 

researchers need to analyze large-scale EEG data efficiently 

and quickly [149]. 

Lastly, while EEGLAB has an intuitive GUI for general 

use, some users especially novices still face challenges 

related to the high learning curve for advanced analysis 

features such as brain network connectivity analysis, 

microstate, or machine learning integration. The EEGLAB 

documentation, although extensive, is often complex and not 

always easy to understand for new users without a strong 

MATLAB or EEG background [150]. This leads to the need 

for intensive training and additional support for users who 

want to fully utilize EEGLAB's advanced capabilities, 

especially when users want to perform complex specific 

analyses or apply the latest analysis approaches that require 

the integration of additional plugins [151]. 

Thus, while EEGLAB has many advantages and broad 

potential, these limitations indicate that users need to 

consider technical, computational, and practical aspects when 

choosing EEGLAB as the primary tool for their EEG 

analysis. Understanding these limitations is important so that 

users can appropriately design the optimal analysis approach, 

know when to complement EEGLAB with additional tools or 

analysis methods, or even choose other software more 

specific to their EEG research or application needs. 

VI. CONCLUSION 

A review of recent literature indicates that EEGLAB 

remains one of the most widely adopted and effective tools for 

EEG signal analysis. Studies published between 2020 and 

2024 highlight its extensive application in both basic 

preprocessing steps (such as filtering, ICA, and re-referencing) 

and in advanced analytical techniques, including time-

frequency analysis, ERSP, ERP, PSD, microstate analysis, and 

brain connec i i y ma  ing. EEGLAB’s key ad an ages lie in 

its analytical flexibility, offered through a user-friendly 

graphical interface, a MATLAB-based scripting environment 

that facilitates process automation, and a comprehensive 

plugin architecture that continues to evolve, supported by an 

active and collaborative international user base. 

In terms of prospects, EEGLAB has very promising 

potential in supporting cross-disciplinary EEG research, 

ranging from cognitive neuroscience to clinical applications 

and the development of EEG wearable technology and brain-

computer interface (BCI). EEGLAB is projected to further 

develop through the integration of the latest analysis 

methods, such as machine learning and multimodal analysis, 

and further strengthen its support for big data-based EEG 

analysis. Support for standardized data formats such as 

BIDS-EEG and the development of additional plugins for the 

integration of other modalities (such as fMRI, NIRS, and 

physiological data) are expected to increase the flexibility and 

interoperability of EEGLAB in the future. 

However, there are some significant limitations that need 

to be addressed in the use of EEGLAB. The high reliance on 

manual or semi-automated processes, especially in artifact 

detection and removal, is a major challenge when dealing 

with large or complex datasets. The limited spatial resolution 

in dipole fitting features also hinders EEG analysis that 

requires high precision in the localization of brain activity 

sources. In addition, although EEGLAB has a multimodal 

integration plugin, its implementation is not yet native and is 

often complex, adding a level of technical difficulty for less 

experienced users. 

Computationally, the efficiency of EEGLAB is limited, 

especially in large-scale EEG analysis, requiring high 

computational resources and relatively long processing times 

compared to some other programming language-based EEG 

analysis platforms, such as Python. This challenge is further 

compounded by the high learning curve for new users, 

especially in understanding advanced features and complex 

plugin integration, requiring additional training or intensive 

mentoring. 

Overall, EEGLAB remains the flagship software in EEG 

analysis due to its feature set, flexibility, and extensive 

community support. However, to maximize its potential in 

the future, the development of EEGLAB should be directed 

towards improving automation and computational efficiency, 

more seamless multimodal integration, and increasing the 

spatial and temporal resolution of analysis. Understanding 

the strengths and limitations of EEGLAB is very important 

so that users can make the right decision in choosing an EEG 

analysis method that suits their research needs and clinical 

applications. 

VII. SUGGESTIONS FOR FUTURE RESEARCH 

Based on the findings from the reviewed studies on 

EEGLAB usage, several directions can be proposed to 

enhance future EEG research. One key recommendation is to 

focus on advancing automated EEG preprocessing methods 

that are not only more accurate but also objective and 

efficient. This can be achieved by leveraging artificial 

intelligence (AI) and machine learning to enable high-

precision detection and removal of artifacts, which in turn 

would reduce dependence on manual visual inspection that is 

often time-consuming and prone to subjectivity. Additionally, 

it is important to broaden the validation of these automated 

techniques across various subject groups and experimental 

EEG conditions to ensure their robustness and applicability in 

large-scale and heterogeneous research contexts. 

Second, it is recommended that future research focus 

more on integrating EEG data with other neuroimaging or 
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physiological modalities more effectively and seamlessly. 

Further research is needed to develop EEGLAB plugins or 

extensions that can easily combine EEG data with fMRI, 

NIRS, MEG, or additional physiological data such as ECG or 

PPG. With better multimodal integration, researchers can 

enrich the interpretation of EEG data with additional insights 

from other modalities, which will ultimately improve the 

validity and accuracy of research findings in explaining the 

underlying mechanisms of the brain or certain clinical 

conditions. 

Third, future research also needs to pay attention to 

improving spatial resolution in EEG source analysis. This can 

be done by developing or integrating more accurate and 

personalized realistic head models, for example with the help 

of individual MRI or other advanced source imaging 

methods, so that the estimation of the location of the EEG 

activity source becomes more precise. In addition, cross-

validation between EEG source estimation and other 

neuroimaging methods such as fMRI or MEG is also 

recommended, to ensure high reliability of EEG source 

analysis performed using EEGLAB. 

Fourth, future research is expected to further strengthen 

EEGLAB's capacity in managing and analyzing large-scale 

EEG datasets. This includes further development in EEG big 

data analysis, especially through increasing EEGLAB's 

computing capacity based on cloud computing or GPU to 

reduce long analysis times. The development of MATLAB-

based parallel processing algorithms or the integration of 

EEGLAB with Python-based EEG analysis platforms could 

also be an interesting solution, to address the increasing 

computational challenges in large-scale EEG research in  

the future. 

Finally, future research is recommended to apply more 

open science principles, especially through the use of 

standardized EEG data formats such as BIDS-EEG. With 

standardized data formats, the exchange and collaboration of 

EEG data between researchers and institutions will be easier, 

increasing the transparency, reproducibility, and validity of 

EEG research globally. This also encourages the EEG 

community to share data, analysis methods, and research 

findings more openly, which will ultimately accelerate 

progress in EEG research across various scientific fields. 
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