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Abstract—Managing large fleets of mobile robots poses 

significant challenges to system coordination and workload. An 

effective grouping strategy is crucial for enhancing operational 

performance and scalability. This paper introduces a two-stage 

dynamic clustering method (DCM), a novel framework for 

organizing robots into manageable groups. The methodology 

utilizes a Gaussian Mixture Model and the Expectation-

Maximization algorithm to cluster robots based on their path 

intersection points. A unique "cost" parameter, formulated a 

least squares objective function, is proposed to guide the 

selection of near-optimal, workload-balanced configurations. 

The results from extensive simulations demonstrated the 

framework's effectiveness. On a single dataset, DCM exhibited 

exceptional reliability, maintaining a stable objective function 

value even as the number of robots per cluster fluctuated across 

runs. A sensitivity analysis over multiple unique datasets 

confirmed the model's adaptive strength, showing its ability to 

re-configure clusters. This adaptability was highlighted by the 

mean objective function value varying across different 

scenarios. Further analysis involving reduced robot populations 

and obstacle-filled environments validated DCM's 

generalizability and environment-independent nature. The 

robot distribution mechanism was consistently equitable and 

balanced. Statistical validation, including bootstrapping 

resamples, confirmed the stability and reliability of the 

performance estimates. The method also steadily maintained a 

high level of performance by adapting to internal variations. 

Moreover, every robot was successfully assigned to all clusters 

across all trials. The research concludes that DCM is a robust, 

adaptive, and environment-independent framework. It 

successfully balances performance stability with the flexibility 

to respond to new operational conditions, proving it is an 

effective solution for multi-robot coordination. 

Keywords—Dynamic Cluster; Gaussian Mixture Model; 

Expectation-Maximization Algorithm; Path Planning; Workload 

Balancing; Multi-Mobile Robots. 

I. INTRODUCTION 

The concept of multi-robot system or multi-mobile robot 

system emerged in the late 1980s, coming from foundational 

research in distributed robotic systems that focused on mobile 

robots [1], [2]. Subsequently, this field expanded to 

encompass groups of UAV, also called multi-UAV system. 

There are many important aspects that are considered to be 

investigated carefully in these multi-robot systems. 

Navigation is one of the most important features, heavily 

associated with localization and map modeling, global and 

local path planning [3] for static or dynamic environments 

[4]. Many algorithms and methods have been proposed and 

developed to deal with the path planning issues [5]-[8]. 

Besides, mapping is divided into two broad approaches, 

outdoor and indoor simultaneous localization and mapping 

[9]-[12]. Task allocation is also the next critical feature for 

efficient and scalable performance of multi-mobile robot 

systems [13]-[15]. It is greatly influenced by the overall 

structure of the system: centralized and decentralized 

approaches [6], [16]. Communication network is a main 

integral part, its capabilities are essential for accomplishing 

tasks as well as coordination among robots, including 

network architecture, routing protocols and data thread with 

IoT platform [17], [18]. Recently, artificial intelligence, such 

as reinforcement learning [19] and deep reinforcement 

learning [20]-[22], has also become very popular tools to 

support path planning, task allocation, and etc. The other 

interesting topics are formation and exploration; area 

coverage and surveillance; search and rescue; foraging and 

flocking; cooperative manipulation; team heterogeneity; 

adversarial environment [23]-[28]. 

Path planning involves generating a collision-free 

trajectory for a robot to move from an initial position to a goal 

position. In multi-robot systems, each robot has to deal with 

not only static environmental obstacles but also dynamic 

ones, particularly the other robots in the system [4], [29], 

[30]. Path planning is closely linked to self-localization and 

map awareness. Furthermore, path planning approaches are 

often designed to achieve several optimal goals, such as 

minimizing time or energy consumption. The path planning 

approaches are classified into several groups: classical types 

(cell decomposition, rapidly-exploring random tree, Dijkstra, 

A*, artificial potential field ...) [3]-[8], [31], bio-inspired 

method (genetic algorithm, ant colony optimization, particle 

swarm optimization, artificial bee colony algorithm ...) [3]-

[6], [8], artificial intelligence [3], [5], [6], heuristic 

approaches including bio-inspired methods as well as 

artificial intelligence [7], [31], and others. When considering 

the specific task of coverage path planning, the approaches 

are typically categorized as geometric methods, grid-based 

searches, reward-based strategies, random incremental 

planners, and near-best-view planners [24]. 

Additionally, multi-mobile robot task allocation (MRTA) 

is a feature of multi-mobile robot systems, challenging 

research aims to achieve the goal of assigning a group of 

robots to a group of tasks in such a way that optimizes the 

overall system performance under a set of predefined 
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constraints. There are two organizational paradigms for the 

overall structure of the system: centralized approaches and 

decentralized approaches [6], [16] together with several most 

commonly used approaches: market-based methods [13], 

[16], metaheuristic-based methods [16] and behavior-based 

approaches [14]. The research also states that some complex 

constraints remain unresolved and one of the groups can be 

classified as environment-related constraints. They include, 

but are not limited to, the dynamic and unpredictable nature 

of the environment as well as its partial observability and 

complexity. 

Distributing tasks within a multi-mobile robot system is 

heavily relies on efficient task allocation and path planning. 

Subsequently, managing their activities to complete these 

assignments presents a significant challenge, primarily due to 

the substantial number of mobile robots involved. Following 

this, it is influenced by the system awareness for the 

workspace. A greater number of robots can enhance the 

system's awareness of the workspace by collecting more data, 

yet their movements also introduce uncertainties that need 

continuous identification over time in the working space. 

Moreover, while using more robots to complete tasks faster, 

it seems to increase the system workload significantly. A 

crucial challenge also lies in maintaining constant situational 

awareness of each robot. They have to warrant that their 

individual movements contribute to overall efficiency. The 

aforementioned facts highlight that clustering mobile robots 

into minor groups is an important and necessary solution to 

mitigate the workload of the systems with a large fleet of 

mobile robots. This grouping method is typically performed 

based on the specific correlation criteria among the individual 

units. Section II represents published works on techniques 

and algorithms in this area and it is a significant research 

activity for multi-mobile robots. 

This paper proposes a two-stage dynamic clustering 

method that utilizes the gaussian mixture model (GMM) to 

distribute the entire robot fleet into several smaller, more 

manageable groups. Fig. 1 illustrates the relationship between 

DCM and the path planning as well as the task allocation 

approaches. DCM aims to reduce overall system workload by 

decreasing communication overhead and enabling more 

efficient local coordination during path execution. Each robot 

only needs to maintain communication and coordinate 

operations (if necessary) with others within its assigned 

group. In order to achieve that, this work offers several key 

contributions: 

• First, while a variety of spatial or hard clustering 

methodologies, such as cell decomposition, Voronoi 

diagrams, and K-means, have been extensively reported 

in Section II, a notable gap exists regarding the utilization 

of GMM clustering for multi-mobile robot applications. 

The probabilistic nature of GMM, which facilitates soft 

clustering, offers a distinct advantage, promising reliable 

and complete clustering performance for adaptability and 

scalability. Thus, our contribution addresses this gap by 

proposing the integration of GMM with the Expectation-

Maximization (EM) algorithm, for clustering multi-robot 

systems. Moreover, the log-likelihood function optimized 

by the EM algorithm is inherently non-convex. This 

function can produce multiple local maxima, rather than 

a singular global maximum. To overcome this, we 

introduce a novel "cost" parameter, when formulated a 

least squares objective function, enables the selection of a 

near-optimal result for workload balancing. 

• Second, a specific correlation criterion is derived from 

intersection point datasets, which represent strictly direct 

relation between robots in the working space. This 

criterion is fundamental to the local coordination 

mechanism, essential not only for collision avoidance but 

also for situation awareness during operation. By 

strategically identifying and removing "unrelated" units, 

those without any intersection points, the local 

coordination is kept minimum, thereby simplifying 

system workload. 

 

Fig. 1. Operation flow for DCM with path planning and task allocation 

The remainder of this paper is organized as follows: 

Section II reviews the relevant literature on clustering 

approaches; section III describes the problem formulation 

and the proposed system methodology; section IV presents 

the simulation results along with a corresponding 

performance analysis; and finally, section V provides the 

concluding remarks and proposed future development. 

II. LITERATURE REVIEW 

Exploiting workspace is a very early way to develop 

algorithms for path planning, area exploration, area coverage, 

and task allocation later. In principle, the workspace consists 

of free space as well as obstacles. The former is the area 

where the mobile robots can move freely and the latter can be 

considered as the restricted space where the mobile robots are 

prohibited from entering. Cell decomposition is a specific 

method for exploiting space. In foundational research, path 

planning is directly derived from cell decomposition, a 

method where a continuous collision-free path is computed 

from a sequence of adjacent cells that constitute the free 

workspace. Furthermore, approximate cell decomposition 

techniques are also widely employed for applications 

requiring not only path planning but also comprehensive area 

coverage. Beyond decomposition, clustering offers another 

useful approach to identify meaningful groups within the 

workspace based on robot-specific features. Later, clustering 

is extended to other objects rather than the workspace based 

on the development of new clustering solutions or the 

application of clustering algorithms that have been applied in 

other research fields. 

Cell decomposition methods are categorized as either 

exact or approximate, a distinction based on the geometry of 

the cells and their collective coverage of the workspace [32]. 

Exact decomposition methods partition the workspace into 

cells, whose union perfectly reconstructs the workspace, such 

as trapezoids [33], [34]. Meanwhile, approximate 
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decomposition employs cells of a uniform, predefined shape, 

typically squares, whose union is strictly included in the 

workspace, thereby approximating its true geometry. 

Recently, there are a few proposed methods, such as 

polygonal grid cells which are squared shape [35], radial cell 

[36], adaptive cell [37] for approximate cell decomposition. 

Approximate cell methods divide the working space into 

a two-dimensional grid of cells. While the most basic 

approach utilizes cells of a uniform size [35], [38], advanced 

techniques often employ variable-resolution grids to enhance 

efficiency. They are the quadtree method as well as  

recursive approaches to split each cell into the four smaller 

ones [39]-[42] or combine several adjacent cells into bigger 

one [43] [44], [45]. A prominent hierarchical strategy is the 

quadtree method, where "mixed" cells containing both free 

space and obstacles are recursively subdivided into four 

quadrants until a minimum resolution is achieved or all cells 

are homogeneous. Conversely, adjacent, homogeneous cells 

can be merged into a single larger cell. This hierarchical 

structure significantly reduces the number of cells required, 

thereby lowering data volume and accelerating computation. 

Alternative strategies for achieving variable resolution 

include adapting cell size based on proximity to  

the robot, using smaller cells nearby and larger ones farther 

away [43], [46], or based on the terrain's complexity, with 

smaller cells representing more intricate profiles [47]. A 

proposed quarter orbits algorithm is inspired by three types, 

including the regular grid, the adaptive cell decomposition, 

and the exact cell decomposition [48]. 

Clustering offers automated approaches to discover 

coherent groups (clusters) in workspace to model their 

unknown global organizational structure formed from the 

specific features of the robots [49]. Voronoi diagram, a 

computational geometry that divides multi-dimensional 

space into regions based on their proximity to a set of seeds, 

is also used for partitioning the working space in area 

coverage and area exploration. There are variations of this 

classic Voronoi diagram, such as Generalized Voronoi 

Diagram [15], [50] and Manhattan Voronoi [51]. Normally, 

they convert a multi-robot coverage problem into a number 

of single robot coverage problems. Some others are Voronoi 

partition-based coverage with optimal grid size relative to the 

sensor footprint [52], Voronoi cell repartitioning for load-

balancing among the robots with limited communication 

ranges [53], and Voronoi diagram with a k-means clustering 

algorithm [54]. There are some other proposed approaches, 

for example virtual tokens in communication network [55], 

an extension on the spatial clustering algorithm designed for 

two classes [56]; particle clustering method [57]; density-

based with relative distances to the centers of regions derived 

from the flying features of UAVs and the geographical 

locations of regions [58]. Clustering approaches are also 

introduced along with task allocation of multi-robots, such as 

Stochastic Clustering Auction [59]; Shapley value clustering 

for partitioning the initial task allocation into a set of the 

smaller and simpler task allocation [60]; decentralized 

coordination framework with cluster formation tracking for 

heterogeneous robots including aerial drones and ground 

robots [61]; correlation clustering [62]; adapted clustering 

based on static communication topology [63]. 

Initially designed for data clustering, the K-means 

algorithm inspires the visual navigation of the mobile robot 

and clustering approaches. The former is to improve the 

recognition ability of the mobile robot navigation to resist 

light source interference [64], use with Silhouette method for 

orchard navigation [65], improve image segmentation which 

strengthens the adaptability of image segmentation by using 

a pre-classification and a maximin method [66], improve 

achieve image segmentation for vegetation with particle 

swarm optimization [67]. The latter is to partition robot goals 

or tasks into distinct regions or clusters, aiming to balance the 

workload of multi-robots. The goals can be acquired by 

multi-robots [68]-[72] or even one robot [73]. The path 

planning is to determine near-optimal paths for each region 

and path connecting regions then. This strategy effectively 

transforms the problem of managing numerous individual 

tasks into managing a smaller set of clustered tasks, leading 

to more efficient task allocation and path planning in multi-

robot systems. Their approaches are the combination of the 

improved K-means algorithm and the particle swarm 

optimization [68] or the K-means algorithm with another 

method: modified multiple travelling salesman problem [69], 

the grey wolf optimizer which improved by Kent chaotic 

algorithm [70], genetic algorithm [71], the auction based 

mechanism [72]. All tasks are grouped into clusters and 

robots are assigned to these clusters in a cost-effective 

manner, such as their travel costs or run-time. 

When used for area exploration or area coverage, the K-

means clustering approaches aim to divide the space into 

distinct regions. This initial fair partitioning ensures focused 

exploration [74], [75] and coverage [76], [77]. As robots 

discover new areas, re-clustering the remaining space is taken 

in order to rebalance the workload among the units. This is 

naturally promoting wider environmental dispersion for 

faster, more comprehensive parallel exploration with 

avoiding collision and repeated area. The Canopy Clustering 

is proposed as an initial step in K-Means Clustering [75]. An 

anti-flocking framework is introduced to execute the 

dynamical selection of the target position of the next step for 

each robot [76]. 

GMM is a data clustering method which uses a mixture 

of Gaussian distributions to model data clusters and the EM 

algorithm to learn the parameters of these distributions. 

GMM can be used to model motion using human 

demonstrations, representing either a continuous degree for 

every time step of a manipulation task [78], [79] or a set of 

segmentation points [80]. GMM and gaussian mixture 

regression (GMR) can implement a learning from 

demonstrations approach for cobot in which GMM can 

encode the demonstration trajectories [81], [82]. GMM can 

map the relationship between the observed variables of the 

object and the robot joint variables that can be used during 

the grasping process [83] or it can monitor daily movements 

of a robotic arm and enhance abnormality detection [84]. 

Some other critical contributions of GMM are path planning 

for a mobile robot and target search in dynamic 

environments. Path planning includes combining the fast 

marching square with Gaussian mixture models to represent 

people [85], and using the Risk-RRT planner with GMM-

derived perception and prediction [86]. GMM allows for 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 2132 

 

Hung Truong Xuan, Dynamic Clustering of Multi-Mobile Robot System using Gaussian Mixture Model 

extracting feature nodes and generating collision-free paths 

considering the pedestrian density and the environmental 

structure. For target search, GMMs help determine the next 

best probability target for UAVs movement. They can be 

used with Infotaxis and a particle filter [87], or with Parzen 

windows [88]. 

The EM algorithm, which is an iterative method, is used 

for the estimation process. The algorithm performs an 

expectation step and a maximization step then to achieve 

maximum likelihood estimation [89]-[91]. These two steps 

are executed iteratively until a convergence condition is met, 

such as when the change between iterations becomes very 

small or a specified number of iterations is reached. 

Cell decomposition and Voronoi diagrams are 

fundamentally geometric spatial partitioning, establishing 

distinct and rigid boundaries for robot groups or spatial 

segments. Similarly, K-means, as a hard clustering algorithm, 

assigns units to groups with equally definitive and non-

overlapping boundaries. Meanwhile, GMM employs soft 

clustering, where cluster membership is determined by 

probability values rather than strict assignment. This inherent 

probabilistic nature provides greater flexibility and 

granularity in cluster structure, allowing GMM to present 

clusters with more "complex" boundaries that can overlap 

and reflect the significant probabilistic distribution of data 

points. 

III. PROBLEM DEFINITION AND SYSTEM APPROACH 

A. Problem Definition 

When the number of robots increases, a key challenge in 

system operation is to coordinate all the units to execute the 

required missions effectively. It's also crucial for the system 

to be aware of the situation as each robot executes its 

individual path to handle the assigned task in the workspace. 

Robots with intersecting paths inherently have the potential 

for spatial and temporal interaction, establishing their natural 

correlation. Thus, clustering these robots allows us to 

concentrate the coordination efforts more effectively. Robots 

can share their location, navigation information, and state 

movement with other cluster members, minimizing conflicts 

and optimizing task execution. This selective information 

sharing significantly enhances situation awareness; each 

robot not only understands its own trajectory but can also 

anticipate and react to the movements of other related robots. 

Moreover, optimized communication is another key 

advantage of the clustering. Robots only need to keep contact 

with the cluster members, those with whom they have the 

highest likelihood of interaction, substantially reducing 

communication bandwidth. Furthermore, by operating 

independently across different cluster data streams, the 

system can achieve better decentralization and improved 

scalability. 

Considering a working space for N robots that is 

populated with static obstacles. It has a well-defined size and 

is represented by the following expression: 

𝒲 = ℝ𝑛 (1) 

where n = 2 or 3. 

We define an obstacle space 𝒪, the region of 𝒲 

containing static obstacles. A static obstacle has a fixed 

position that does not change over time from the moment it 

appears in the workspace. Assuming that 𝒲 has m obstacles, 

𝒪 can be determined by the following formula: 

𝒪 = 𝒪1 ∪ 𝒪2 … ∪ 𝒪𝑚 ⊂ 𝒲 (2) 

where 𝒪1, 𝒪2. . . , 𝒪𝑛 are the space for each obstacle, 

respectively. 

Free space ℱ is a specific part of the working space 𝒲 

where robots can move freely. We have a relation between ℱ 

and 𝒲 as follow: 

ℱ ⊂ 𝒲  (3) 

and 

(ℱ ∪ 𝒪) ⊂ 𝒲   (4) 

The (4) indicates that there are some regions that belongs 

to 𝒲 and do not belong to 𝒪, but robots still cannot reach 

them due to their size factor. 

When N robots, called 𝐴1, 𝐴2, . . . , 𝐴𝑁, move along 

independent paths from their own starting points to the goals 

in the working space 𝒲. Assuming the starting points of N 

robots are (𝑞10, 𝑞20, . . . , 𝑞𝑁0) and the goals are 

(𝑞1𝐺 , 𝑞2𝐺 , . . . , 𝑞𝑁𝐺), the paths of N robots are: 

[
𝑃𝑎𝑡ℎ1(𝑡)

. . .
𝑃𝑎𝑡ℎ𝑁(𝑡)

]   

where path of 𝐴𝑖 is defined as follows: 

𝑃𝑎𝑡ℎ𝑖(𝑡) = 𝑓𝑝𝑝(𝑞𝑖0 𝑞𝑖𝐺)  (5) 

and i is index of 𝐴𝑖; 𝑞𝑖0 is starting point and 𝑞𝑖𝐺  is goal of 𝐴𝑖; 

(𝑞10, 𝑞20, . . . , 𝑞𝑁0) and (𝑞1𝐺 , 𝑞2𝐺 , . . . , 𝑞𝑁𝐺) are all in free 

space ℱ. 

If the path of 𝐴𝑖 intersects the path of 𝐴𝑗, we define the 

intersection points as follows: 

(𝐶𝑜𝑖,𝑗) = 𝑃𝑎𝑡ℎ𝑖(𝑡) ∩ 𝑃𝑎𝑡ℎ𝑗(𝑡) ≠ ∅ (6) 

So, there is a data set for the intersection points between 

the paths of N robots: 

𝒞 = ⋃ (𝐶𝑜𝑖,𝑗)𝑁
𝑖,𝑗=0   (7) 

and the relationships shown are: 

𝐴𝑖 ⟺ 𝑃𝑎𝑡ℎ𝑖(𝑡) ⟺ 𝐶𝑜𝑖,𝑗  (8) 

As indicated in (8), the correlation between robots that 

have intersections with their paths is much stronger than 

those without intersections. Consequently, the intersection 

point dataset, as illustrated in (7), is chosen as the basis for 

the clustering method of robots.  



Journal of Robotics and Control (JRC) ISSN: 2715-5072 2133 

 

Hung Truong Xuan, Dynamic Clustering of Multi-Mobile Robot System using Gaussian Mixture Model 

B. Gaussian Mixture Model 

Given the aforementioned advantages, GMM is the 

chosen method for grouping multi-mobile robot system by 

using the intersection point dataset in this paper. GMM is 

represented by the overall probability density function which 

is a weighted sum of every components [89]-[91], namely: 

𝑝(𝑥) = ∑ 𝑤𝑖𝑁(𝑥|𝜇𝑖 , Σ𝑖)
𝐾
𝑖=1   (9) 

where 𝑤𝑖  is mixing weight of ith component with 𝑤𝑖 > 0, 

∑ 𝑤𝑖
𝐾
𝑖=1 = 1  (10) 

and 𝑁(𝑥|𝜇𝑖 , Σ𝑖) is a Gaussian density function which also 

called a component is defined as follows: 

𝑁(𝑥|𝜇𝑖 , Σ𝑖) = 

1

(2𝜋)
𝑛
2 (|Σ𝑖|)

1
2

𝑒𝑥𝑝 (−
1

2
(𝑥 − 𝜇𝑖)

𝑇Σ𝑖
−1(𝑥 − 𝜇𝑖))  

(11) 

where 𝑥 ∈ ℝ𝑛 represents a data vector, 𝜇𝑖 ∈ ℝ𝑛 is the mean 

and Σ𝑖  is the 𝑛 × 𝑛 covariance matrix of the ith Gaussian 

density. We have three critical unknown parameters of GMM 

in the (9) and (11). There is the mean 𝜇𝑖, the covariance 

matrix Σ𝑖 , and the weight 𝑤𝑖 . If these parameters are 

estimated well, we can model the distribution of the data set 

by using GMM. The EM algorithm can be obtained by two 

parts: 

• Expectation step: calculate the most likely values that 

component 𝐶𝑖 generate sample 𝑥𝑗 each iteration based on 

the current understanding of the model. The computation 

equation is as follows: 

𝑓𝐸(𝐶𝑖|𝑥𝑗) =
𝑤𝑖𝑁(𝑥𝑗|𝜇𝑖 , Σ𝑖)

∑ 𝑤𝑖𝑁(𝑥𝑗|𝜇𝑘, Σ𝑘)𝐾
𝑘=1

  (12) 

• Maximization step: update the parameters of each 

component, the mean 𝜇𝑖, the covariance matrix Σ𝑖  and the 

weight 𝑤𝑖  based on the most likely values 𝐶𝑖 calculated in 

the expectation step. The equations for maximization step 

are as follows: 

𝑤𝑖 =
∑ 𝑓𝐸(𝐶𝑖|𝑥𝑗 )𝑠

𝑗=1

𝑠
  (13) 

𝜇𝑖 =
∑ 𝑓𝐸(𝐶𝑖|𝑥𝑗 )𝑥𝑗

𝑠
𝑗=1

𝑠𝑤𝑖
  (14) 

Σ𝑖 =
∑ 𝑓𝐸(𝐶𝑖|𝑥𝑗 )(𝑥𝑗−𝜇𝑖)(𝑥𝑗−𝜇𝑖)

𝑇𝑠
𝑗=1

𝑠
  (15) 

where s is number of samples. 

C. System Approach 

By leveraging the intersection data set and the relation 

between the intersection points and the robots illustrated in 

(8), GMM effectively separates units into several smaller, 

more manageable groups for the N-robot system. This 

strategy significantly reduces system workload by decreasing 

communication overhead and facilitating local coordination. 

Specifically, each robot only needs to maintain 

communication and coordinate operations (if necessary) with 

others within its assigned group. Besides, a critical 

characteristic of the log-likelihood function optimized for 

GMM by the EM algorithm is its non-convexity. This 

inherent property means that the function can produce 

multiple local maxima rather than a single global maximum, 

leading to numerous clustering results that satisfy the 

aforementioned requirements. 

Given the need for effective local coordination among 

robots, it's crucial to select clustering results that ensure a 

comparable number of robots within each cluster. This 

approach enables a balanced workload distribution across 

clusters. Consequently, a system with such workload-

balanced groups becomes inherently more scalable, allowing 

it to maintain performance and adapt flexibly to changing 

workloads. To achieve this, a novel 'cost' parameter is 

proposed to evaluate the local coordination of each cluster in 

the mentioned system. This parameter is determined by the 

number of robots participating in sharing information with 

each other in a well-defined given time. The value can be 

calculated as following expression: 

𝛿𝑘 =
1

𝑁𝐾
  (16) 

with 𝑘 = 1. . 𝐾, K is the number of clusters and 𝑁𝐾 is the 

number of robots allocated in the cluster kth. 

Subsequently, a least squares objective function is 

formulated to derive the near-optimal clustering result, 

specifically: 

𝑓𝑜𝑏𝑗 = √∑ (𝛿𝑘)2𝐾
𝑘=1 → 𝑚𝑖𝑛  (17) 

The proposed objective function aims to optimize the 

distribution of robots across clusters, not merely by 

minimizing the sum of squared parameters, but by leveraging 

the least squares criterion to achieve a near best-fit clustering 

result. Specifically, this function endeavors to make the 

values of (𝛿1, 𝛿2, . . 𝛿𝐾) as similar and as small as possible. 

This direct approach effectively ensures an equivalent 

number of robots within each cluster, thereby fostering a 

balanced workload distribution across the entire system. 

The proposed solution is dynamic clustering method 

(DCM) and it has two main stages with the intersection data 

set as the input: 

• Stage 1: determine the parameter sets for the GMM model 

based on the EM algorithm. The GMM model is 

illustrated as (9) and (11). The input is the intersection 

data set. The parameter sets are the mean 𝜇𝑖, the 

covariance matrix Σ𝑖  and the weight 𝑤𝑖  for each ith cluster. 

The (10), (12) to (15) are used for iterative estimation of 

the EM algorithm. 

• Stage 2: determine the number of robots in each cluster 

based on (8). Based on that basis, we calculate the cost 

value of each cluster and objective function according to 

(16) and (17). 
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Repeating the stage 1 and stage 2 to find the smallest 

value of the objective function after a certain iteration. The 

corresponding parameter sets for the GMM is also the near-

optimal result. 

IV. RESULTS AND DISCUSSION 

The performance of the dynamic clustering technique was 

assessed through simulation scenarios within a discrete 

25×25 map. A fleet of 50 robots was simulated, with each 

robot tasked to navigate from a randomly generated starting 

coordinate (𝑞10, 𝑞20, . . . , 𝑞𝑁0) to a randomly assigned goal 

coordinate (𝑞1𝐺 , 𝑞2𝐺 , . . . , 𝑞𝑁𝐺) and Fig. 2 illustrates such a 

dataset. Because of the random selection, the simulation run 

could yield each unique dataset of path intersections. Due to 

the computational limitations of the simulation computer, the 

number of robots and the map size are restricted accordingly 

as mentioned above in the simulation model. 

 

Fig. 2. Starting points and goals 

The A* pathfinding algorithm was implemented to 

compute the optimal path for each robot. The algorithm 

critically depends on the precise configuration of static 

obstacles in the working space, as these obstacles directly 

impact the search space and profoundly modify the geometry, 

length, and location of the computed optimal paths. 

Consequently, the given set of intersection points of these 

paths will inherently vary with the presence and arrangement 

of obstacles. In contrast, GMM and the EM algorithm operate 

independently of the environmental context. Their function is 

to model the distribution of a given dataset, relying solely on 

the intrinsic properties of the data points themselves, such as 

coordinates, data density, and point-to-point distances, rather 

than the environment from which these points are generated. 

While the distribution of intersection points may differ 

significantly between obstacle-filled and obstacle-free 

environments, the fundamental mathematical principles of 

GMM and EM remain constant. 

Based on the above statement, the evaluation is carried 

out based on quantitative data determined from three 

proposed simulation scenarios, mentioned as below: 

• In the first simulation scenario, DCM was executed 100 

times on a single dataset of intersection points to perform 

an uncertainty quantification. We applied descriptive 

statistical methods to gain deeper insight into the 

variability and reliability of the cluster configurations. 

Specifically, we calculated the mean, standard deviation, 

and interquartile range across these runs for two key 

aspects: the number of robots assigned to each cluster and 

the minimum objective function value. This analysis 

allowed us to characterize the variability in the cluster 

composition and the stability of DCM's performance. 

• In the second simulation scenario, a sensitivity analysis 

was conducted to assess the model's performance against 

varied input data. To do this, we generated four more 

distinct datasets of intersection points by the A* 

algorithm with four different sets of 50 random start-and-

goal pairs. DCM was then executed 100 times on each of 

these datasets. This analysis allowed us to evaluate cluster 

sensitivity by systematically comparing cluster 

characteristics across the different input conditions and 

multiple simulation runs. 

• The third simulation scenario was designed to assess the 

generalizability of the proposed DCM framework and 

empirically demonstrate its environment-independent 

nature. To achieve this, the model's performance was 

evaluated under two distinct conditions designed to 

introduce complexity and constraints. The first condition 

featured a reduced agent population, with 25 robots 

operating within a 25×25 obstacle-free map. In contrast, 

the second condition retained the full contingent of 50 

robots but introduced environmental complexity via 

randomly placed obstacles within the same map. For both 

cases, the A* algorithm was employed to generate two 

distinct datasets of intersection points. DCM was 

executed 100 times on each dataset then. By analyzing the 

performance under these varied conditions, this 

evaluation provided robust evidence of the DCM's 

adaptability and broad applicability. 

The number of clusters, K, for the GMM was empirically 

selected as 3. The selection is motivated by an intuitive 

experienced partitioning of the workspace, suggesting 

potential natural groupings of the robots. The EM algorithm 

was executed with a maximum of 100 iterations. 

Convergence of the EM algorithm was determined by 

monitoring the cumulative maximum likelihood achieved 

over each iteration. The termination happens when the 

change in this cumulative likelihood between successive 

iterations fell below a threshold of 1×10−6. It means that the 

parameter estimation has fully stabilized. 

Table I presented the final data from the first simulation 

scenario. The data included the minimum objective function 

value (𝑓𝑜𝑏𝑗𝑚𝑖𝑛), the number of robots in each group for every 

clustering configuration, and 𝑟𝑐𝑙 , which showed the 

percentage of the total robot population that was clustered. 

Table II then provided a statistical summary for the set of 

𝑓𝑜𝑏𝑗𝑚𝑖𝑛  values and the number of robots per cluster. 

The statistical indicators of 𝑓𝑜𝑏𝑗𝑚𝑖𝑛  values demonstrated 

remarkable stability and consistency. Specifically, the strong 

central tendency was confirmed by the convergence of the 

mean of 0.0567 and median of 0.0565, which this difference 
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of 0.0003 is very small compared to the standard deviation of 

0.0026. It is suggested a relatively symmetrical data 

distribution with negligible skew. The top chart of Fig. 3 

displayed the distribution of the 𝑓𝑜𝑏𝑗𝑚𝑖𝑛  values. Furthermore, 

the low variability was substantiated by a small standard 

deviation at 0.0026 and a compact interquartile range of 

0.0026, indicating that the data points are tightly grouped 

around the mean. This consistency was reinforced by the 

close alignment between the calculated 95% confidence 

interval (2σ) of (0.0515, 0.0619) and the observed empirical 

range of the data, from 0.0518 to 0.0644. 

TABLE I.  FINAL DATA OF THE FIRST SIMULATION SCENARIO 

𝒇𝒐𝒃𝒋𝒎𝒊𝒏 

Number of 

robots in 

each cluster 

rcl 

(%) 
𝒇𝒐𝒃𝒋𝒎𝒊𝒏 

Number of 

robots in 

each cluster 

rcl 

(%) 

#1 #2 #3 #1 #2 #3 

0.0593 27 25 43 100 0.0564 31 43 25 100 

0.0641 25 24 36 100 0.0563 26 36 33 100 

0.0565 36 25 35 100 0.0575 37 25 32 100 

0.0553 36 33 27 100 0.0565 37 25 34 100 

0.0635 34 28 23 100 0.0565 34 25 37 100 

0.0558 25 33 41 100 0.0519 37 31 33 100 

0.0577 29 25 43 100 0.0612 39 35 21 100 

0.0565 34 37 25 100 0.0553 33 27 36 100 

0.0557 33 35 27 100 0.0614 25 32 29 100 

0.0606 23 29 41 100 0.0593 27 43 25 100 

0.0575 32 37 25 100 0.0593 27 43 25 100 

0.0565 37 25 34 100 0.0544 34 28 35 100 

0.0565 36 35 25 100 0.0570 25 30 43 100 

0.0565 36 25 35 100 0.0525 37 30 33 100 

0.0558 41 25 33 100 0.0565 37 34 25 100 

0.0553 33 27 36 100 0.0541 33 35 29 100 

0.0593 25 27 43 100 0.0584 34 39 23 100 

0.0565 25 34 37 100 0.0531 29 35 35 100 

0.0558 33 25 41 100 0.0538 31 35 31 100 

0.0563 33 36 26 100 0.0595 30 24 38 100 

0.0531 35 29 35 100 0.0584 43 28 25 100 

0.0531 29 35 35 100 0.0561 32 42 25 100 

0.0586 23 33 40 100 0.0565 25 37 34 100 

0.0565 34 25 37 100 0.0577 29 43 25 100 

0.0563 33 26 36 100 0.0558 25 32 43 100 

0.0561 25 42 32 100 0.0586 40 33 23 100 

0.0558 43 32 25 100 0.0563 33 26 36 100 

0.0525 32 33 34 100 0.0558 32 43 25 100 

0.0521 35 32 33 100 0.0593 27 25 43 100 

0.0565 35 36 25 100 0.0553 34 35 27 100 

0.0565 37 34 25 100 0.0577 29 43 25 100 

0.0538 31 35 31 100 0.0570 30 43 25 100 

0.0570 25 43 30 100 0.0565 25 36 35 100 

0.0563 36 33 26 100 0.0558 25 32 43 100 

0.0536 34 35 29 100 0.0628 25 34 26 100 

0.0564 31 43 25 100 0.0565 36 25 35 100 

0.0541 29 35 33 100 0.0549 28 33 35 100 

0.0538 31 35 31 100 0.0565 25 34 37 100 

0.0521 35 33 32 100 0.0538 35 31 31 100 

0.0614 29 25 32 100 0.0541 33 35 29 100 

0.0545 36 28 33 100 0.0552 29 35 31 100 

0.0539 30 32 35 100 0.0589 38 31 24 100 

0.0614 29 25 32 100 0.0553 33 27 36 100 

0.0565 37 34 25 100 0.0538 31 35 31 100 

0.0531 35 35 29 100 0.0579 36 38 23 100 

0.0586 23 40 33 100 0.0579 36 23 38 100 

0.0579 36 23 38 100 0.0565 25 37 34 100 

0.0593 25 43 27 100 0.0644 23 36 26 100 

0.0558 25 41 33 100 0.0614 29 32 25 100 

0.0544 28 34 35 100 0.0577 25 29 43 100 

 

 

TABLE II.  STATISTICAL INDICATORS OF THE FIRST SIMULATION SCENARIO 

 𝒇𝒐𝒃𝒋𝒎𝒊𝒏 
Number of robots in each 

cluster 

#1 #2 #3 

Dataset #1 

Mean 0.0567 31.38 32.67 31.82 

Standard deviation 0.0026 4.89 5.73 5.9 

Median 0.0565 32 33 32.5 

First quartile (Q1) 0.0553 27 27.75 25.75 

Third quartile (Q3) 0.0579 35 35.25 35.25 

Interquartile range (IQR) 0.0026 8 7.5 9.5 

 

A bootstrapping technique was employed with 10,000 

bootstrapped resamples to robustly assess the reliability of 

the mean 𝑓𝑜𝑏𝑗𝑚𝑖𝑛  values. The bottom chart of Fig. 3 showed 

the distribution of the bootstrapped 𝑓𝑜𝑏𝑗𝑚𝑖𝑛  means calculated 

from the bootstrapped samples. The plot appeared as a normal 

distribution and was tightly centered around a mean of 

0.0567, a value identical to the original sample mean, 

indicating an accurate and unbiased estimate. The standard 

deviation of this bootstrap distribution, known as the standard 

error, was found to be exceptionally small at 0.00026. This 

was substantially lower than the standard deviation of the 

original data at 0.0026, which reflects the dispersion of 

individual data points. It confirmed that the estimate of the 

mean is highly reliable, despite very few variabilities among 

the individual 𝑓𝑜𝑏𝑗𝑚𝑖𝑛 values themselves. Furthermore, the 

narrow 95% confidence interval derived from the bootstrap 

analysis of (0.0561, 0.0572) further supported the above 

conclusion. 

 

Fig. 3. Histogram of 𝑓𝑜𝑏𝑗𝑚𝑖𝑛 data (top) and bootstrapped 𝑓𝑜𝑏𝑗𝑚𝑖𝑛 means 

(bottom) 
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The statistical indicators revealed strong similarities in 

the central tendencies of robot distribution across the three 

clusters. Specifically, the mean and median values for all 

clusters were concentrated within a narrow range of 31 to 33 

robots, and the proximity of these two metrics within each 

cluster suggested a relatively symmetrical data distribution. 

Meanwhile, the primary distinction among the clusters, 

however, lied in their respective levels of dispersion but not 

in their central value. Cluster #3 exhibited the highest 

variability, evidenced by the largest standard deviation of 

5.90 and interquartile range of 9.50. This indicated that the 

number of robots was more dispersed in Cluster #3 than in 

the others. In contrast, Cluster #1 and Cluster #2 showed 

lower variability signifying more stability in their robot 

counts. In summary, while the overall robot distribution is 

fairly equitable, the clusters differ notably in their 

consistency. Cluster #3 is characterized by significant 

population variability, whereas Clusters #1 and #2 maintain 

more stable configurations. 

The first simulation scenario disclosed the performance 

reliability in the face of cluster configuration variation. The 

overall performance, quantified by the 𝑓𝑜𝑏𝑗𝑚𝑖𝑛 values, 

exhibited exceptional stability. The conclusion was 

substantiated by the narrow 95% confidence interval of 

(0.0561, 0.0572) derived via bootstrapping. This consistency 

was particularly noteworthy when contrasted with the 

significant variations in the underlying cluster configurations, 

where the number of robots per cluster fluctuates between 

different simulation runs. The ability to maintain a stable and 

consistent level, even when the distribution of robots 

changed, demonstrated the performance reliability of DCM. 

The method could effectively adapt to internal variations 

without compromising its overall objective. 

Table III presented the summary of the statistical 

indicators for four datasets of the second simulation scenario, 

from Dataset #2 to Dataset #5. There were key metrics for the 

𝑓𝑜𝑏𝑗𝑚𝑖𝑛  values and the number of robots per cluster (#1, #2, 

and #3). Additionally, it included the statistical results 

derived from bootstrapping the original 𝑓𝑜𝑏𝑗𝑚𝑖𝑛 samples. The 

bootstrapping method was applied with 10,000 samples to 

estimate the stability of the mean. 

While analysis of individual datasets, from Dataset #2 to 

Dataset #5, suggested that DCM maintained a stable and 

consistent performance level, mirroring the reliability 

observed in the first simulation scenario, corresponding to 

Dataset #1. A comprehensive sensitivity analysis across all 

five datasets confirmed the different core strength of DCM, 

its remarkable responsiveness to varying conditions. This 

pronounced sensitivity was quantitatively evident in both the 

objective function and the distribution of robots. The mean 

value of 𝑓𝑜𝑏𝑗𝑚𝑖𝑛  fluctuated significantly, ranging from a 

lowest data of 0.0563 in Dataset #4 to a highest data of 0.0645 

in Dataset #5, underscoring a strong dependency on the 

specific dataset. This was further corroborated by robot 

distribution metrics, where the standard deviation per cluster 

varied considerably across Datasets #2 through #5, reflecting 

DCM's success in dynamically reallocating robots to match 

each scenario's specific input set. Therefore, the sensitivity 

analysis confirmed the adaptive strength of DCM without the 

existence of a single, universally optimal clustering structure. 

DCM had the ability to tolerate internal configuration 

changes to maintain stability for one problem while 

completely re-forming that configuration to adapt to new 

ones. 

TABLE III.  STATISTICAL INDICATORS OF THE SECOND SIMULATION 

SCENARIO 

 

boot-

strapped 

samples 

𝒇𝒐𝒃𝒋𝒎𝒊𝒏 
Number of robots in 

each cluster 

#1 #2 #3 

Dataset #2 

Mean 0.0642 0.0642 29.81 30.28 29.75 

Standard 

deviation 
0.00021 0.0021 7.65 7.88 8.21 

Median 0.0642 0.0653 29 29 29 

First quartile 

(Q1) 
0.0640 0.0646 23 23 22 

Third quartile 

(Q3) 
0.0643 0.0655 36.25 38 38 

Interquartile 

range (IQR) 
0.00028 0.0009 13.25 15 16 

Confidence 

Interval (2𝜎) 
(0.0638, 

0.0646) 

(0.0599, 

0.0685) 
   

Dataset #3 

Mean 0.0611 0.0611 29.96 29.46 31.29 

Standard 
deviation 

0.00014 0.0014 6.89 6.13 7.18 

Median 0.0611 0.0615 28 27 28 

First quartile 

(Q1) 
0.0610 0.0594 24 24 25.5 

Third quartile 

(Q3) 
0.0612 0.0623 37.25 37 38 

Interquartile 
range (IQR) 

0.00018 0.0029 13.25 13 12.5 

Confidence 

Interval (2𝜎) 
(0.0608, 
0.0613) 

(0.0583, 
0.0638) 

   

Dataset #4 

Mean 0.0563 0.0563 32.15 32.13 31.27 

Standard 

deviation 
0.00017 0.0017 5.12 5.33 4.94 

Median 0.0563 0.0566 29 29 29 

First quartile 
(Q1) 

0.0562 0.0564 27 27 27 

Third quartile 

(Q3) 
0.0564 0.0570 37 37 36 

Interquartile 

range (IQR) 
0.00022 0.0006 10 10 9 

Confidence 

Interval (2𝜎) 
(0.0560, 
0.0566) 

(0.0529, 
0.0596) 

   

Dataset #5 

Mean 0.0645 0.0645 30.57 29.3 27.69 

Standard 

deviation 
0.0003 0.0031 5.99 6.08 6.32 

Median 0.0645 0.0636 34 32 28 

First quartile 

(Q1) 
0.0643 0.0625 25.5 24 22 

Third quartile 
(Q3) 

0.0647 0.0667 35 34 34 

Interquartile 

range (IQR) 
0.0004 0.0042 9.5 10 12 

Confidence 

Interval (2𝜎) 

(0.0639, 

0.0651) 

(0.0584, 

0.0706) 
   

 

Table IV presented the summary of the statistical 

indicators for two datasets, Dataset #6 and Dataset #7, tương 

ứng với two cases of the third simulation scenario. They are 

reduced agent population, with 25 robots operating within a 

25x25 obstacle-free map, and the full contingent of 50 robots 

within the 25x25 obstacle-filled map. There were key metrics 

for the 𝑓𝑜𝑏𝑗𝑚𝑖𝑛  values and the number of robots per cluster 
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(#1, #2, and #3). Meanwhile, it also included the statistical 

results derived from bootstrapping the original 𝑓𝑜𝑏𝑗𝑚𝑖𝑛  

samples. The bootstrapping method was applied with 10,000 

samples to estimate the stability of the mean. 

A comparative statistical analysis of Dataset #6 and 

Dataset #7 revealed a consistently stable and reliable system 

performance across different operational cases. The mean of 

𝑓𝑜𝑏𝑗𝑚𝑖𝑛  proved to be a stable estimator of the true population 

mean, a conclusion strongly supported by bootstrapping 

methods. For instance, in the Dataset #7, the bootstrapped 

mean of 0.0626 was identical to the original sample mean, 

and its corresponding standard error of 0.00023 was 

significantly smaller than the original data's standard 

deviation of 0.0023. The narrow 95% confidence interval, 

from 0.06210 to 0.06301, and the convergence of the 

bootstrapped sampling distribution to an approximately 

normal shape, even when the original data was skewed, 

reinforced the validity and stability of the mean estimate. 

TABLE IV.  STATISTICAL INDICATORS OF THE THIRD SIMULATION 

SCENARIO 

 

boot-

strapped 

samples 

𝒇𝒐𝒃𝒋𝒎𝒊𝒏 
Number of robots in 

each cluster 

#1 #2 #3 

Dataset #6 

Mean 0.1413 0.1413 13.24 13.34 13.82 

Standard 

deviation 
0.0011 0.0107 3.3 3.2 3.14 

Median 0.1413 0.1355 14 14 15 

First quartile 

(Q1) 
0.1406 0.1355 10 10 11 

Third 
quartile (Q3) 

0.142 0.15 15 16 16 

Interquartile 

range (IQR) 
0.0014 0.0145 5 6 5 

Confidence 

Interval (2𝜎) 

(0.1391, 

0.1434) 

(0.1200, 

0.1626) 
   

Dataset #7 

Mean 0.0626 0.0626 30.76 30.14 31.45 

Standard 

deviation 
0.00023 0.0023 8.52 8.25 8.41 

Median 0.0625 0.0623 27.5 26 30 

First quartile 

(Q1) 
0.0624 0.0619 23 23 23 

Third 

quartile (Q3) 
0.0627 0.0625 38 37.25 37.25 

Interquartile 

range (IQR) 
0.00031 0.00069 15 14.25 14.25 

Confidence 

Interval (2𝜎) 
(0.06210, 

0.06301) 

(0.05799, 

0.06712) 
   

 

Furthermore, the robot distribution mechanism 

demonstrated a high degree of equity and balance in both 

analyses. The clusters consistently exhibited similar 

measures of central tendency and dispersion, indicating that 

the partitioning algorithm was unbiased and that assignment 

variability was uniform across experimental runs. Crucially, 

these analyses presented a comparable stability in the DCM's 

performance under two distinct cases: reduced agent 

population, with 25 robots in the obstacle-free map, and the 

full contingent of 50 robots in the obstacle-filled map. When 

considered alongside findings from the first simulation 

scenario, this empirically demonstrated the generalizability 

and environment-independent nature of the proposed DCM. 

V. CONCLUSION AND FUTURE WORK 

The dynamic clustering method is proven a robust and 

adaptive approach for grouping robots based on their path 

intersections. The framework uses a Gaussian Mixture Model 

and the Expectation-Maximization algorithm to cluster the 

intersection points into a predetermined number of groups, 

which was empirically set to three for these simulations. 

Across the trials, 100% of the robots were successfully 

assigned to a cluster. A key "cost" parameter, formulated a 

least squares objective function, is introduced in this method. 

The function is used for evaluating the performance of a 

given clustering configuration. Analysis reveals that the 

DCM's performance is exceptionally stable and reliable for a 

single dataset, maintaining a consistent objective function 

value even as the number of robots per cluster fluctuates 

between runs. Rather than simply creating smaller groups, the 

system identifies near-optimal configurations that ensure 

overall stable performance. Meanwhile, the adaptive 

sensitivity, when presented with entirely new datasets, is also 

achieved. DCM re-configures the clusters to adapt to the new 

configurations, demonstrating its ability to generalize across 

different scenarios. This dual capacity for maintaining 

stability while remaining adaptive to new conditions 

confirms the DCM is a highly effective and environment-

independent framework for robot coordination. 

Although DCM has shown encouraging initial results, the 

proposed future developments aim to deepen the analytical 

understanding of this method. Specifically, the analysis will 

extend beyond performance metrics to evaluate the spatial 

stability of the clusters. Furthermore, the initially subjective 

choice of K=3 will be validated through a data-driven, 

objective selection process using established indices to 

determine the optimal model complexity. Finally, the 

research will investigate the quantitative relationship 

between the topological properties of the input data, such as 

the density or dispersion of intersection points or their 

dynamic updates, and DCM's performance to realize the 

system's sensitivity. A separate avenue of future research will 

involve assessing the performance and viability of DCM 

when adapted for IoT-enabled robot systems. 
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