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Abstract—This study addresses model order reduction for 

unmanned rotorcraft flight dynamics, specifically focusing on 

the development of computationally efficient, low-order 

representations for fourth-order linear time-invariant (LTI) 

models. The research contribution is a systematic evaluation of 

the Lyapunov Truncation (LT) algorithm in the context of 

rotorcraft dynamics, where the need for reduced-order models 

is motivated by real-time control and simulation requirements 

in autonomous aerial vehicles. The LT method exploits 

controllability and observability Gramians to identify dominant 

state directions, but it inherently relies on the assumptions of 

linearity and time-invariance. The reduction process yields 

models of third, second, and first order, which are 

comparatively assessed using time-domain (RMSE), peak error, 

frequency-domain (total error), and statistical reliability 

metrics. Results show that the second-order reduced model 

achieves a 50% reduction in system complexity, with RMSE as 

low as 0.0537 rad/s in the lateral-to-pitch channel and relative 

errors consistently below 200% for all channels. Maximum 

deviations remain under one unit for most channels, and total 

frequency-domain error is minimized at this order (1519.48). In 

contrast, first-order models exhibit RMSEs exceeding 1000% in 

certain channels and peak deviations above 4 units, highlighting 

limitations in preserving stability margins and transient 

behaviors. Overall, the study demonstrates that second-order 

Lyapunov Truncation achieves the optimal balance between 

computational efficiency and dynamic fidelity, supporting its 

adoption for practical control-oriented reduction of LTI 

unmanned rotorcraft models within their valid operational 

envelope. 

Keywords—Model Order Reduction; Lyapunov Truncation; 

Flight Dynamics; Linear Time-Invariant Systems; Gramian-

Based Reduction; Stability Preservation; Unmanned Rotorcraft; 

Lyapunov Equation. 

I. INTRODUCTION 

Unmanned rotorcraft systems, including quadrotors, 

coaxial helicopters, and tilt-rotor platforms, exemplify a class 

of aerial vehicles capable of vertical takeoff, hovering, and 

agile maneuvering, owing to their rotary-wing configurations 

and the absence of onboard pilots [1], [2]. These systems have 

been pivotal in expanding applications such as infrastructure 

inspection, environmental monitoring, and urban air mobility 

[3], [4]. The operational flexibility of rotorcraft enables rapid 

response in disaster management, search and rescue, and 

hazardous area reconnaissance [5], [6], supporting missions 

where adaptability and autonomy are critical [7], [8], [9]. 

Advances in sensor integration, multi-agent coordination, 

and real-time control have facilitated deployment in 

collaborative transport, persistent surveillance, and aerial 

manipulation, reinforcing the strategic role of rotorcraft in 

both civil and defense domains [10], [11], [12]. 

The development of accurate flight dynamics models is 

fundamental to ensuring the safety, reliability, and advanced 

functionality of unmanned rotorcraft [13], [14]. High-fidelity 

dynamic models capture complex aerodynamic, rotor, and 

environmental interactions [15], [16], underpinning robust 

control, guidance, and navigation [17], [18]. Such models are 

essential for simulation-based design, hardware-in-the-loop 

testing, and operational planning [19], [20], [21]. 

Additionally, dynamic modeling supports energy 

management, fault detection, and assessment of novel 

airframe or payload configurations [22], [23], [24]. The 

increasing demands of safety-critical and autonomous 

missions heighten the need for validated dynamic models 

integrated with adaptive and intelligent control strategies 

[25], [26], [27]. Techniques such as fuzzy logic, neural 

networks, and sliding mode control further enhance system 

resilience and mission success [28], [29], [30]. 

However, the analysis and computation of high-order 

flight dynamics models remain challenging due to intricate 

coupling among aerodynamic, multibody, and control 

dynamics [31], [32]. Capturing nonlinear phenomena, 

including rotor flapping, dynamic inflow, and fuselage-rotor 

interactions, often leads to high-dimensional, stiff systems 

with numerous state variables [33], [34]. This complexity is 

exacerbated by the need to model diverse operational 

regimes, such as transition flight, aggressive maneuvers, and 

disturbance rejection, each requiring accurate representation 

of time-varying parameters and uncertainties [35], [36], [37]. 

Traditional system identification and simulation approaches 

frequently struggle to balance model fidelity with 

computational efficiency, particularly for real-time analysis 

and certification [38], [39], [40]. 

In response, recent research has increasingly integrated 

advanced computational techniques, data-driven modeling, 

and robust control [41], [42]. Surrogate modeling, leveraging 

neural networks and reduced-order strategies, has been 
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successful in capturing dominant system dynamics while 

alleviating computational burdens [43], [44], [45]. Adaptive 

mesh refinement and generalized stability analysis have 

improved the scalability and reliability of high-order 

simulations [46], [47]. Control methods such as geometric 

trajectory planning, disturbance observers, and sliding mode 

control are now widely used to maintain stability and tracking 

under uncertainty [48], [49], [50]. Sparse identification, 

polytopic modeling, and nonlinear model predictive control 

have further supported real-time, high-performance control 

[51], [52]. Kinematically exact inverse-simulation algorithms 

and advanced actuator modeling contribute to the reliable 

validation of complex flight profiles [53], [54], [55]. These 

advances are critical in overcoming the challenges posed by 

high-order, high-dimensional models, promoting safer and 

more autonomous aerial systems [56]. 

Model order reduction (MOR) techniques have thus 

become indispensable in rotorcraft modeling, aiming to 

balance dynamic fidelity and computational efficiency [57], 

[58], [59]. Among these, the Lyapunov Truncation (LT) 

algorithm has been widely recognized for its theoretical 

foundations and practical utility in reducing the order of high-

dimensional linear time-invariant (LTI) systems [60], [61]. 

LT utilizes controllability and observability Gramians, 

computed via Lyapunov equations, to eliminate state 

directions with minimal influence on input-output behavior 

[62], [63]. This reduction preserves essential dynamic 

characteristics and can offer error bounds under certain 

conditions [64], [65], [66]. LT has been effectively applied to 

complex models where simulation and controller synthesis 

are computationally demanding [67], [68]. However, the 

applicability of LT is inherently limited to LTI systems, 

typically linearized about specific operating points [69], [70]. 

Critical limitations, such as reduced performance in capturing 

rapid transients, difficulty handling time-varying or nonlinear 

dynamics, sensitivity to parameter variations, and numerical 

challenges in Gramian computation for very high-order 

systems, must be acknowledged [71], [72], [73]. These issues 

are particularly relevant for rotorcraft, where diverse and 

changing flight regimes and strong coupling effects are 

prevalent [74], [75]. 

Alternative MOR methods, including balanced 

truncation, Hankel-norm approximation, Krylov subspace 

approaches, and proper orthogonal decomposition, have also 

been explored [76], [77]. Each method presents unique 

strengths and drawbacks in terms of error properties, 

passivity preservation, and computational complexity [78], 

[79], [80]. Compared to these, LT offers a compelling 

compromise between model simplicity, stability 

preservation, and accuracy in moderately sized LTI systems 

[81]. However, previous studies have rarely examined LT's 

robustness to transient phenomena, error accumulation across 

regimes, or sensitivity in parameter-varying contexts [82], 

[83]. The broader literature lacks comprehensive, 

quantitative benchmarks of LT-reduced rotorcraft models 

that explicitly address these issues [84], [85]. 

This research thus seeks to address a critical gap in the 

current literature: there remains a need for systematic 

evaluation of the stability-preserving capabilities, accuracy, 

and practical limitations of LT-based model reduction for 

unmanned rotorcraft flight dynamics [86]. The present study 

rigorously applies the LT algorithm to a fourth-order LTI 

rotorcraft model, analyzing reduced models of various orders 

in both time and frequency domains. Explicit attention is 

given to the preservation of stability margins, error behavior 

across channels, and sensitivity to key parameters. 

The research contribution is a comprehensive, 

quantitative, and qualitative assessment of Lyapunov 

Truncation for order reduction in LTI rotorcraft dynamics, 

delineating the achievable balance between computational 

efficiency and dynamic fidelity, and clarifying the 

operational boundaries and research questions, such as 

whether second-order LT reduction can achieve RMSE 

below 0.054 rad/s in lateral-to-pitch channels, maintain 

relative errors below 200%, and limit peak deviation within 

one unit while halving model complexity. 

II. LYAPUNOV TRUNCATION (LT) ALGORITHM 

The Lyapunov Truncation (LT) algorithm is a principled 

model order reduction technique for continuous-time linear 

time-invariant (LTI) systems. By leveraging the solutions of 

the system’s controllability and observability Lyapunov 

equations, LT systematically identifies and retains the most 

dynamically significant state components, yielding a 

reduced-order model that faithfully preserves the essential 

input-output behavior of the original high-order system. This 

method is particularly valuable in contexts where preserving 

stability and dominant energy modes is critical, such as in 

robust control design and large-scale system simulation [74] 

– [83]. Let the original continuous-time LTI system be 

represented in the state-space form as follows (1): 

𝒮𝑜: {
𝒛̇𝑜(𝑡) = 𝑨𝑜𝒛(𝑡) + 𝑩𝑜𝒖(𝑡)

𝒚𝑜(𝑡) = 𝑪𝑜𝒛(𝑡) + 𝑫𝑜𝒖(𝑡)
 (1) 

where 𝑨𝑜 ∈ ℝ𝑛×𝑛, 𝑩𝑜 ∈ ℝ𝑛×𝑚, 𝑪𝑜 ∈ ℝ𝑝×𝑛, and 𝑫𝑜 ∈
ℝ𝑝×𝑚. The objective of LT is to construct a reduced-order 

system (2): 

𝒮𝑙: {
𝐳̇𝑙(𝑡) = 𝐀𝑙𝐳𝑙(𝑡) + 𝐁𝑙𝐮(𝑡)
𝐲𝑙(𝑡) = 𝐂𝑙𝐳𝑙(𝑡) + 𝐃𝑙𝐮(𝑡)

 (2) 

with 𝐴𝑙 ∈ ℝ𝑙×𝑙, 𝐵𝑙 ∈ ℝ𝑙×𝑚, 𝐶𝑙 ∈ ℝ𝑝×𝑙, 𝐷𝑙 = 𝐷𝑜, and 𝑙 < 𝑛, 

such that the input-output behavior of 𝒮𝑙 approximates that of 

𝒮𝑜 with high fidelity. 

The LT algorithm is described as follows [74] – [83]: 

Inputs: The system matrices (𝑨𝑜, 𝑩𝑜, 𝑪𝑜 , 𝑫𝑜) and the 

desired reduced order 𝑙. 

Outputs: The reduced-order system matrices 

(𝑨𝑙 , 𝑩𝑙 , 𝑪𝑙 , 𝑫𝑙). 

LT Algorithmic Procedure 

 Step 1: The algorithm commences by computing the 

controllability and observability Gramian matrices, denoted 

by 𝑲𝑐 and 𝑲𝑜, as the unique positive definite solutions to the 

following Lyapunov equations (3) and (4): 

𝑨𝑜𝑲𝑐 + 𝑲𝑐𝑨𝑜
⊤ + 𝑩𝑜𝑩𝑜

⊤ = 𝟎 (3) 
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𝑨𝑜
⊤𝑲𝑜 + 𝑲𝑜𝑨𝑜 + 𝑪𝑜

⊤𝑪𝑜 = 𝟎 (4) 

Step 2: To identify the most energetically significant state 

directions, the algorithm performs a congruence 

transformation based on the joint structure of 𝑲𝑐 and 𝑲𝑜. 

Specifically, the symmetric product 𝑲𝑐𝑲𝑜 is subjected to an 

eigenvalue decomposition as (5): 

𝑲𝑐𝑲𝑜 = 𝑽𝐿𝑇𝜮𝐿𝑇
2 𝑽𝐿𝑇

−1 (5) 

where 𝑽𝐿𝑇 contains the generalized eigenvectors and 𝜮𝐿𝑇 =
diag(𝜒1, … , 𝜒𝑛) is the diagonal matrix of positive singular 

values, ordered such that 𝜒1 ≥ 𝜒2 ≥ ⋯ ≥ 𝜒𝑛 > 0.  The LT 

transformation matrix is then constructed as (6): 

𝑻𝐿𝑇 = 𝑲𝑐
1/2

𝑽𝐿𝑇𝜮𝐿𝑇
−1/2 (6) 

This transformation simultaneously diagonalizes both 

Gramians in the transformed coordinates. 

Step 3: The dominant subspace is determined by selecting 

the first l columns of 𝑻𝐿𝑇, denoted as 𝑻𝐿𝑇,𝑙. The original state 

is projected onto this subspace (7): 

𝒛𝑙(𝑡) = 𝑻𝐿𝑇,𝑙
⊤ 𝒛(𝑡) (7) 

Step 4: The reduced-order system matrices are given by 

the following projections (8): 

𝑨𝑙 = 𝑻𝐿𝑇,𝑙
⊤ 𝑨𝑜𝑻𝐿𝑇,𝑙; 𝑩𝑙 = 𝑻𝐿𝑇,𝑙

⊤ 𝑩𝑜;  
𝑪𝑙 = 𝑪𝑜𝑻𝐿𝑇,𝑙; 𝑫𝑙 = 𝑫𝑜  

(8) 

These matrices define the reduced-order model 𝒮𝑙, which 

retains the most significant dynamical features of the original 

system. 

The Lyapunov Truncation algorithm thus yields a 

reduced-order model by identifying and preserving the state 

directions associated with the largest joint 

controllability/observability energies, as quantified by the 

dominant singular values of 𝑲𝑐𝑲𝑜. The systematic use of the 

LT transformation ensures that the reduced system not only 

approximates the original input-output map but also inherits 

key stability and structural properties. 

While the LT algorithm offers a principled framework for 

model order reduction, it is crucial to recognize its intrinsic 

limitations and underlying assumptions to ensure scientific 

rigor and practical applicability. The LT algorithm is strictly 

limited to LTI systems. As such, its theoretical guarantees, 

including the preservation of stability and approximation of 

input-output behavior, do not generally extend to nonlinear 

or time-varying systems, which are common in real-world 

rotorcraft dynamics. Applying LT to a system outside the LTI 

class may result in significant modeling errors, or 

misrepresentation of transient and frequency-domain 

responses. 

Another critical assumption of LT is the existence of 

unique, positive definite controllability and observability 

Gramians, 𝑲𝑐 and 𝑲𝑜. This presupposes that the original 

system is minimal, i.e., both controllable and observable. In 

high-order or poorly excited systems, Gramians can be ill-

conditioned or nearly singular, especially when some state 

variables have little impact on the input-output dynamics. 

Such numerical difficulties can degrade the accuracy of the 

reduced model. Additionally, computing Gramians for very 

large-scale systems may pose significant computational 

challenges, requiring efficient numerical solvers and possibly 

low-rank approximations. 

The selection of the truncation order l is nontrivial and 

can substantially affect the trade-off between model 

simplicity and fidelity. While the dominant singular values of 

𝑲𝑐𝑲𝑜 provide a qualitative guide, a more systematic criterion 

involves selecting the smallest l such that 
∑ 𝜒𝑖
𝑙
𝑖=1

∑ 𝜒𝑖
𝑛
𝑖=1

≥ 𝛾, where 

𝜒𝑖  are the ordered singular values and 𝛾 ∈ (0,1) is a chosen 

energy retention threshold (e.g., 0.95). However, no universal 

rule exists for optimal selection, and in safety-critical 

contexts, a posteriori validation, such as time/frequency-

domain analysis or stability margin checks, remains essential.  

It is important to note that LT does not guarantee the 

preservation of structural properties such as passivity, 

dissipativity, or specific frequency-domain characteristics, 

unless additional constraints or post-hoc verification are 

imposed. Therefore, verification of these properties in the 

reduced model is recommended, especially in aerospace or 

safety-critical domains. 

Comparison with other model reduction techniques 

reveals that Modal Truncation retains eigenmodes with the 

slowest decay rates but may fail to capture joint input-output 

significance. Moment Matching methods (e.g., Krylov 

subspace approaches) focus on matching Markov parameters 

or system moments at specific frequencies, typically offering 

superior performance for frequency-localized 

approximations but less robust stability preservation. LT 

strikes a balance between interpretability, computational 

simplicity, and stability preservation in moderately sized LTI 

systems, but may be suboptimal in contexts requiring 

guaranteed passivity or extremely high-order reduction. 

III. APPLY LYAPUNOV TRUNCATION TO REDUCE THE 

ORDER OF UNMANNED ROTORCRAFT SYSTEMS 

A precise mathematical representation of unmanned 

rotorcraft flight dynamics is essential for the design, analysis, 

and reduction of control-oriented models. In this context, the 

dynamics are typically expressed in a linear time-invariant 

(LTI) state-space framework, which is particularly well-

suited for model reduction techniques such as Lyapunov 

Truncation (LT). Consider the linear dynamic system of the 

helicopter [85], [86] around the equilibrium point, which is 

captured by the state-space model (1), where: 

𝒛(𝑡) ∈ ℝ𝑛: State vector, 𝒛(𝑡) = [𝜉1,  𝜉2,  𝜉3,  𝜉4]
⊤, where 

𝜉1 and 𝜉2 denote independent body angular rates (e.g., roll 

and pitch), and 𝜉3 and 𝜉4 represent dominant rotor dynamic 

states (e.g., flapping or stabilizer dynamics). 

𝒖(𝑡) ∈ ℝ𝑚: Control input vector, 𝒖(𝑡) = [𝜐1,  𝜐2]
⊤, 

corresponding to two principal control inputs (e.g., lateral and 

longitudinal cyclic). 

𝒚(𝑡) ∈ ℝ𝑝: Output vector, representing measured or 

controlled outputs (e.g., body rates or attitudes). 
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𝑨𝑜 = [

0 0 0 𝛼1
0 0 𝛼2 0
0 −𝜅1 −𝜆1 𝛾1

−𝜅2 0 𝛾2 −𝜆2

] ; 𝑩𝑜 = [

0 0
0 0
𝛽1 0
0 𝛽2

] ; 

𝑪𝑜 = [
1 0 0 0
0 1 0 0

]; 𝑫𝑜 = [
0 0
0 0

] 

𝛼1, 𝛼2: Coupling coefficients between angular rates and 

rotor dynamics (roll and pitch channels). 𝜅1, 𝜅2: Coupling 

between angular rates and rotor states. 𝜆1, 𝜆2: Damping or 

time-constant-related terms for rotor dynamics. 𝛾1, 𝛾2: 

Additional cross-coupling or feedback effects. 𝛽1, 𝛽2: 

Effective control derivatives for lateral and longitudinal 

channels. 

The parameters characterizing this system are described 

in Table I [85]. 

TABLE I.  QUANTITATIVE PARAMETERS FOR SYSTEM MATRICES IN THE 

UNMANNED ROTORCRAFT MODEL 

Parameter Value Physical Interpretation 

𝛼1 
583.50 

s−2 
Lateral spring coupling coefficient (roll 

axis) 

𝛼2 
265.30 

s−2 
Longitudinal spring coupling coefficient 

(pitch axis) 

𝜆1 3.34 
Damping/time constant for primary rotor 

dynamic state 

𝜆2 3.34 
Damping/time constant for secondary rotor 

dynamic state 

𝜅1 1.00 Pitch rate to rotor state coupling 

𝜅2 1.00 Roll rate to rotor state coupling 

𝛾1 2.45 
Cross-coupling/feedback (rotor state to rotor 

state) 

𝛾2 2.22 
Cross-coupling/feedback (rotor state to rotor 

state) 

𝛽1 2.15 Control input effectiveness (lateral channel) 

𝛽2 1.98 
Control input effectiveness (longitudinal 

channel) 

 

Implement the LT algorithm in MATLAB, then perform 

model order reduction on the 4th-order unmanned rotorcraft 

flight dynamics model [85] to lower orders (3rd, 2nd, and 1st 

order). The quantitative and qualitative comparison results 

are presented in Table II to Table VII and Fig. 1 to Fig. 10. 

TABLE II.  TIME DOMAIN ERROR ANALYSIS (RMSE) 

Order Lateral→p Lateral→q Longitudinal→p 

Order 3 0.236892 0.385047 0.497847 

Order 2 0.053687 0.109825 0.113236 

Order 1 1.430534 0.682953 0.787222 

  

Table II summarizes the RMSE performance for various 

model reduction orders. Order 2 provides the best trade-off, 

achieving a relative error of 6.39% in the lateral-to-pitch 

channel, reflecting high approximation accuracy. In contrast, 

the lateral-to-yaw channel is highly sensitive to reduction, 

with errors rising sharply from 783.98% at Order 3 to 

1390.54% at Order 1, underscoring the significance of 

higher-order modes for capturing cross-coupling effects. 

Longitudinal channels exhibit moderate errors, with Order 2 

maintaining relative errors below 100% for both relevant 

transfer paths. These results indicate that balanced truncation 

effectively preserves primary control dynamics, while cross-

coupling fidelity diminishes with lower orders, confirming 

Order 2 as the most suitable balance between model 

simplicity and dynamic representation. 

TABLE III.  MAXIMUM ERROR BOUNDS ASSESSMENT 

Order 
Lateral 

→p 

Lateral 

q 

Longitudinal 

→p 

Longitudinal 

→q 

3 0.754010 1.237304 1.615879 2.651600 

2 0.080490 0.237380 0.232590 0.703264 

1 4.606804 2.259235 2.580940 0.560152 

 

Table III reports the key peak deviation values relevant to 

safety margin assessment. For all channels except 

longitudinal-to-yaw, the reduced model of Order 2 limits 

maximum errors to below one, with the lateral-to-pitch 

channel displaying a notably low peak error of 0.080490, 

substantially lower than the 4.606804 observed at Order 1. 

This significant reduction ensures that transient responses 

remain within practical safety thresholds. The non-uniform 

error distribution across channels indicates that balanced 

truncation affects different dynamic modes to varying 

degrees. Overall, Order 2 offers the most effective peak error 

control for safety-critical rotorcraft applications. 

TABLE IV.  FREQUENCY DOMAIN FIDELITY CHARACTERISTICS 

Order G11 (Mag/Phase) G12 (Mag/Phase) G21 (Mag/Phase) G22 (Mag/Phase) Total Error 

3 266.30/3805.80 570.75/3371.42 607.12/3347.52 377.55/3970.92 1902.26 

2 146.65/1007.67 476.15/3608.75 527.54/3658.34 315.68/1348.60 1519.48 

1 347.11/4054.20 575.93/3972.57 617.64/3972.57 305.19/4461.98 1937.33 

TABLE V.  STATISTICAL RELIABILITY ASSESSMENT THROUGH CONFIDENCE INTERVALS 

Order Channel Mean Abs Error Confidence Interval CI Width 

3 

Lateral→p 0.124531 [-0.017459, 0.266521] 0.283980 

Lateral→q 0.189391 [-0.046825, 0.425608] 0.472433 

Longitudinal→p 0.219681 [-0.095103, 0.534466] 0.629569 

Longitudinal→q 0.483788 [-0.011567, 0.979142] 0.990709 

2 

Lateral→p 0.049645 [0.035246, 0.064044] 0.028798 

Lateral→q 0.092357 [0.050484, 0.134230] 0.083746 

Longitudinal→p 0.087258 [0.036409, 0.138108] 0.101699 

Longitudinal→q 0.321864 [0.177512, 0.466216] 0.288704 

1 

Lateral→p 0.709166 [-0.166215, 1.584547] 1.750762 

Lateral→q 0.247610 [-0.200857, 0.696078] 0.896935 

Longitudinal→p 0.336901 [-0.164413, 0.838216] 1.002629 

Longitudinal→q 0.298491 [0.172236, 0.424746] 0.252510 
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Table IV highlights significant frequency domain 

discrepancies across all reduced models, with magnitude 

errors spanning 146.65 dB to 617.64 dB and phase errors 

consistently above 1000 degrees. Order 2 yields the lowest 

total frequency error at 1519.48, although its H-infinity norm 

increases to 3.887 compared to 3.427 for Order 3. Errors in 

cross-coupling transfer functions (G12 and G21) remain 

higher than those in direct paths (G11 and G12), indicating 

that balanced truncation better preserves primary control 

dynamics than secondary couplings. These results underscore 

the need for thorough frequency domain validation of 

reduced-order models, especially when frequency response is 

a critical design consideration. 

Table V presents 95% confidence intervals for error 

estimates, underscoring the statistical reliability of each 

reduced model. Order 2 demonstrates the highest precision, 

with narrow confidence intervals across all channels; notably, 

the lateral-to-pitch channel achieves a CI width of 0.028798 

with bounds entirely above zero [0.035246,0.064044]-

[0.035246,0.064044], reflecting robust and consistent error 

estimation. In contrast, Order 3 yields mixed results: while 

three channels conform to normality, the longitudinal-to-

pitch channel deviates from normal distribution and features 

negative lower bounds, indicating possible instability in error 

estimates. Order 1 is associated with the broadest intervals, 

particularly in the lateral-to-pitch channel (CI width: 

1.750762), signifying greater uncertainty and reduced 

reliability for applications demanding tightly bounded 

performance. 

TABLE VI.  STATISTICAL RELIABILITY ASSESSMENT THROUGH 

CONFIDENCE INTERVALS 

Order Channel 25th 50th 75th 95th 

3 

Lateral→p 0.03141 0.07797 0.09058 0.72205 

Lateral→q 0.05747 0.07133 0.13947 1.18555 

Longitudinal 
→p 

0.02127 0.10310 0.13737 1.54703 

Longitudinal 

→q 
0.10615 0.33257 0.42441 2.54262 

2 

Lateral→p 0.03605 0.05710 0.06130 0.08036 

Lateral→q 0.05746 0.08857 0.12193 0.23274 

Longitudinal 

→p 
0.03279 0.05427 0.14020 0.23068 

Longitudinal 
→q 

0.11663 0.35517 0.45872 0.69384 

1 

Lateral→p 0.22298 0.32782 0.49014 4.40459 

Lateral→q 0.03630 0.05288 0.06644 2.15046 

Longitudinal 

→p 
0.08793 0.12807 0.16092 2.46202 

Longitudinal 

→q 
0.10935 0.34490 0.41488 0.55919 

 

Table VI presents a detailed percentile analysis of error 

distributions for each reduction order. Order 2 demonstrates 

notable consistency, with narrow interquartile ranges and 

controlled tails; the 95th percentile remains below 0.7 across 

all channels, indicating that even the largest errors are 

constrained within operationally acceptable limits. In 

contrast, Order 3 displays moderate tail extension, with 95th 

percentile values between 0.722054 and 2.542624. Order 1 

exhibits the most pronounced tail risk, as evidenced by a 95th 

percentile of 4.404587 in the lateral-to-pitch channel. 

Median-to-95th percentile ratios further highlight the 

stability of Order 2’s error distribution, with errors closely 

clustered around the median, whereas higher dispersion in 

Orders 1 and 3 suggests greater susceptibility to extreme 

deviations, potentially affecting system reliability under 

atypical conditions. 

Table VII presents a quantitative ranking of reduced-

order models based on composite performance scores. Order 

2 is identified as the most effective configuration, achieving 

the lowest overall score of 15,288.08 while maintaining a 

moderate average error of 93.32%. With a 50% reduction in 

model complexity, Order 2 offers an optimal compromise 

between computational efficiency and approximation quality, 

supporting its suitability for practical deployment. Order 3 

provides intermediate performance, with a 25% complexity 

reduction but less favorable trade-offs. In contrast, Order 1, 

despite reducing complexity by 75%, incurs a prohibitive 

average error of 566.64%, undermining its reliability for 

control applications. These results indicate that reducing 

model order below two yields diminishing returns, as further 

complexity savings come at the expense of unacceptable 

losses in dynamic fidelity and operational robustness. 

TABLE VII.  FREQUENCY DOMAIN FIDELITY CHARACTERISTICS 

Rank Order 
Performance 

Score 

Average 

Error 

(%) 

Complexity 

Reduction 

(%) 

1st 2 15,288.08 93.32% 50.0% 

2nd 3 19,357.12 334.57% 25.0% 

3rd 1 19,939.91 566.64% 75.0% 

 

A comprehensive evaluation of balanced truncation for 

helicopter dynamics indicates that a second-order reduction 

offers the most effective balance between computational 

efficiency and model accuracy, achieving a 50% reduction in 

complexity with an average error of 93.32%. While Order 3 

provides slightly improved accuracy in certain channels, such 

as a 6.39% relative RMSE in the lateral-to-pitch path for 

Order 2 versus 28.21% for Order 3, the incremental accuracy 

does not offset the decreased computational gains. Frequency 

domain analysis reveals significant magnitude and phase 

distortions for all reduced models, with H-infinity norms 

ranging from 3.427 to 5.701, underscoring the need for 

rigorous validation in closed-loop applications. Statistical 

analysis further supports the reliability of Order 2, which 

exhibits consistently narrow confidence intervals and normal 

error distributions across channels. In contrast, Order 1, 

despite maximal complexity reduction, results in excessive 

errors, exceeding 1000% in cross-coupling terms, rendering 

it unsuitable for practical use. Overall, these results 

demonstrate that balanced truncation effectively retains the 

primary control dynamics of the helicopter, with Order 2 

representing the practical limit for reduction before accuracy 

losses outweigh computational benefits in real-time control 

contexts. 

Fig. 1 illustrates the step responses to lateral input for the 

pitch (p) and yaw (q) angular velocity channels. Orders 2 and 

3 closely replicate the original fourth-order system in the 

lateral-to-pitch response, accurately capturing both 

oscillatory dynamics and steady-state convergence near 1 

rad/s. Order 2, in particular, aligns well with the reference 

model, whereas Order 1 exhibits significant transient 

distortion, including an initial undershoot to -4 rad/s. In the 
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lateral-to-yaw channel, Order 2 maintains low cross-coupling 

error, while Order 3 introduces an initial overshoot of 

approximately 1.2 rad/s, deviating from the near-zero 

response of the full-order model. Order 1 displays substantial 

transient errors in both channels, undermining its suitability 

for reliable cross-coupling representation. 

 

Fig. 1. Lateral input step response characteristics 

Fig. 2 presents the step responses to longitudinal input, 

emphasizing the retention of primary control dynamics and 

the limitations in cross-coupling approximation. In the 

longitudinal-to-pitch channel, Order 2 closely follows the 

original system’s smooth convergence, while Order 3 

introduces an initial overshoot of 1.5 rad/s and Order 1 

exhibits a pronounced undershoot below -2.5 rad/s, indicating 

significant transient error. For the longitudinal-to-yaw 

response, none of the reduced models fully capture the 

original peak of 1.3 rad/s at t = 0.15s, though Order 2 provides 

the closest approximation, albeit with an underestimated 

peak. These results demonstrate that balanced truncation 

effectively preserves dominant direct channel dynamics but 

reduces fidelity in cross-coupling responses. 

 

Fig. 2. Longitudinal input step response analysis 

Fig. 3 presents a detailed error analysis for lateral input 

scenarios, quantifying approximation errors over time for 

each reduction order and output channel. In the lateral-to-

pitch channel, Order 2 achieves the lowest RMSE at 0.0537 

rad/s, with consistently bounded errors, while Order 1 

displays large initial errors exceeding 4 rad/s that diminish 

over time. Order 3 yields a moderate RMSE of 0.2369 rad/s, 

reflecting adequate but inferior performance relative to Order 

2. For the lateral-to-yaw channel, Order 2 again maintains the 

lowest error, whereas Order 1 achieves an intermediate 

RMSE of 0.6830 rad/s despite significant transient 

deviations, and Order 3 exhibits higher sustained errors 

(RMSE: 0.3850 rad/s). These results confirm that Order 2 

offers the most favorable trade-off between computational 

efficiency and approximation accuracy for lateral control. 

 

Fig. 3. Lateral input error distribution patterns 

Fig. 4 details the error analysis for longitudinal input 

cases, highlighting distinct channel-specific approximation 

challenges. In the longitudinal-to-pitch channel, Order 2 

achieves the lowest RMSE at 0.1132 rad/s with minimal 

variance, while Order 3 and Order 1 yield higher RMSE 

values of 0.4978 rad/s and 0.7872 rad/s, respectively, with 

Order 1 also exhibiting significant initial transients. For the 

longitudinal-to-yaw channel, Order 1 records the lowest 

RMSE (0.3481 rad/s), though this result likely reflects 

compensatory error effects rather than true model fidelity. 

Order 2 maintains stable error levels (RMSE: 0.3815 rad/s) 

with well-controlled temporal behavior, whereas Order 3 has 

the highest RMSE at 0.8534 rad/s and pronounced initial 

deviations. Collectively, these results indicate that Order 2 

provides the most consistent and reliable approximation 

across input conditions, supporting its suitability for practical 

helicopter control applications. 

Fig. 5 displays the Bode magnitude plots for lateral input 

channels, highlighting the frequency-domain accuracy of 

reduced-order models. In the lateral-to-pitch path, the 

original system shows a distinct resonance near 10 rad/s and 

a sharp high-frequency roll-off. Orders 2 and 3 accurately 

capture the resonance and low-frequency response but 

deviate from the original at higher frequencies, with Order 2 

slightly underestimating attenuation beyond the peak. Order 

1 fails to reproduce both the resonance and high-frequency 

roll-off, exhibiting an almost flat response and 

overestimating gain at high frequencies. For the lateral-to-

yaw cross-coupling, all reduced models diverge from the 

original above 10 rad/s, though Order 2 most closely matches 

the resonance region while still underestimating high-

frequency attenuation. These results indicate that preserving 

at least two states is necessary to maintain critical frequency-

domain features, especially for control applications where 

resonance and bandwidth are important. 
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Fig. 4. Longitudinal input error characteristics and performance assessment. 

 

Fig. 5. Frequency domain magnitude response for lateral input 

Fig. 6 presents the Bode magnitude plots for longitudinal 

input channels, clarifying the influence of model reduction on 

both primary and cross-coupling dynamics. In the 

longitudinal-to-pitch channel, Orders 2 and 3 accurately 

reproduce the original system’s low-frequency gain and 

resonance peak, with only minor discrepancies beyond the 

resonance frequency. Order 1, however, fails to capture the 

full dynamic range, substantially overestimating the 

magnitude at higher frequencies. For the longitudinal-to-yaw 

path, all reduced models underestimate the resonance peak 

and show earlier-than-expected attenuation, though Order 2 

provides the closest approximation. These findings 

underscore the trade-off inherent in model reduction: while 

lower-order models improve computational efficiency, they 

may exclude essential high-frequency and resonance 

characteristics critical for robust control and stability 

analysis. 

Fig. 7 presents the Bode phase responses for lateral input 

channels, assessing phase fidelity across reduced-order 

models. For the lateral-to-pitch channel, Order 2 accurately 

follows the original phase trajectory up to the resonance 

frequency, with increasing deviations at higher frequencies. 

Order 3 exhibits greater phase discrepancies throughout, 

while Order 1 fails to replicate the original system’s phase 

lag, resulting in a substantially altered phase profile. In the 

lateral-to-yaw channel, only Order 2 maintains a qualitatively 

similar phase progression, whereas Orders 1 and 3 show 

significant divergence, particularly at elevated frequencies. 

These results underscore the sensitivity of phase response to 

model order and the necessity of appropriate order selection 

to preserve phase margins and ensure closed-loop stability. 

 

Fig. 6. Frequency domain magnitude response for longitudinal input 

 

Fig. 7. Phase response for lateral input channels 

Fig. 8 displays the phase responses for longitudinal input 

channels, clarifying the performance of reduced-order 

models. In the longitudinal-to-pitch transfer, Order 2 closely 

matches the original system’s phase up to the resonance 

frequency, with gradual divergence at higher frequencies 

while preserving the overall phase trend. Orders 3 and 1 

exhibit significant phase distortion, especially at elevated 

frequencies, which may impair control performance. The 

longitudinal-to-yaw phase response shows that only Order 2 

reliably tracks the original phase within the critical frequency 

range, whereas lower-order models demonstrate pronounced 

deviations. These results confirm that second-order reduction 

provides the most effective balance, retaining key phase and 

magnitude characteristics essential for robust controller 

design and system analysis. 

Fig. 9 compares RMSE values and their normalized 

percentages across various reduced orders and input-output 

channels. The upper subplot indicates that first-order 

reduction produces the largest RMSE in all channels, with the 

most pronounced errors observed in the lateral-to-pitch and 

longitudinal-to-pitch responses. Increasing model order 

substantially reduces RMSE: second-order reduction yields a 

significant improvement in approximation accuracy across 

all channels. Although third-order reduction introduces a 

slight RMSE increase in some cases compared to the second 

order, overall errors remain moderate, suggesting limited 

benefit from further order increases. The lower subplot, 

presenting RMSE as a percentage of the original system 
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output, confirms that first-order models can result in relative 

errors exceeding 1000% in certain channels, notably lateral-

to-yaw and longitudinal-to-pitch. Conversely, second-order 

reduction consistently maintains relative RMSE below 200% 

for all channels, demonstrating an effective balance between 

model simplicity and fidelity. These findings emphasize the 

necessity of retaining at least two dominant modes to ensure 

reliable time-domain performance without incurring 

unnecessary model complexity. 

 

Fig. 8. Phase response for longitudinal input channels 

 

Fig. 9. RMSE performance and relative error analysis 

Figure 10 evaluates model reduction performance by 

comparing maximum instantaneous errors and cumulative 

frequency-domain errors across reduced orders. The upper 

subplot shows that first-order reduction results in the largest 

peak errors, particularly in the lateral-to-pitch channel, where 

deviations exceed 4 units. Maximum errors decrease 

significantly with second-order reduction and increase only 

slightly with third-order models. The lower subplot 

summarizes total frequency-domain error, with the second-

order model achieving the lowest aggregate error across all 

channels. Increasing the order beyond two does not further 

reduce the overall frequency-domain error and may introduce 

overfitting or capture non-dominant dynamics. These results 

confirm that second-order reduction provides the optimal 

balance between simplicity and accuracy in both time and 

frequency domains, supporting its suitability for control-

oriented model reduction in this application. 

 

Fig. 10. Maximum error and frequency-domain error evaluation 

IV. DISCUSSION 

Despite the close alignment of the second-order reduced 

model with the original system in most performance metrics, 

a systematic framework for interpreting error magnitudes is 

essential for assessing the operational feasibility of reduced-

order models in safety-critical unmanned rotorcraft 

applications. In practice, acceptable error thresholds are 

typically informed by control performance specifications, 

regulatory guidelines, or empirical tolerances derived from 

prior studies. For instance, relative RMSE values below 10% 

in primary control channels are often considered sufficient for 

disturbance rejection and trajectory tracking in similar 

aerospace systems. In this context, the observed second-order 

RMSE of 0.0537 rad/s (6.39% relative error) for the lateral-

to-pitch channel falls comfortably within this accepted 

margin, while errors exceeding 100%, as seen in cross-

coupling channels for first-order reduction, would be deemed 

unacceptable for most control tasks. 

To quantitatively assess whether a given error is 

operationally significant, the normalized error can be defined 

as: 𝜀norm =
‖𝑦full−𝑦reduced‖2

‖𝑦full‖2
× 100%, where yfull and yreduced are 

the output trajectories of the full and reduced models, 

respectively. The suitability of each reduced model order is 

then evaluated relative to a predetermined acceptability 

threshold, e.g., εnorm < 10% for primary channels, and a more 

relaxed threshold for cross-coupling terms when full 

decoupling is not required. 

Although frequency-domain errors may seem large, their 

impact on closed-loop performance is mitigated if the 

dominant frequency range for the control system lies outside 

these regions. However, frequency-domain fidelity must be 

prioritized for applications involving aggressive maneuvers 

or high-bandwidth tracking. The peak error and confidence 

interval analysis (Table III and Table V) provide additional 

insight into transient risk and statistical reliability. 

For LTI systems under linear feedback control, the 

closed-loop transfer function becomes: 𝑇cl,reduced(𝑠) = [𝐼 +

𝐾(𝑠)𝐺reduced(𝑠)]
−1𝐾(𝑠)𝐺reduced(𝑠), where K(s) is the 

controller and Greduced(s) the reduced plant. If model reduction 

induces significant phase lag or reduces phase margin (as 

seen in high phase errors in Table IV), the stability and 

performance of the closed-loop system may be compromised. 

The phase margin reductions greater than 5 deg or gain 
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crossover frequency shifts exceeding 10% typically warrant 

a review of model order selection. 

The results reported here are based on a nominal 

linearization around a fixed operating point. However, real-

world rotorcraft dynamics are inherently nonlinear and time-

varying. The second-order model's effectiveness should be 

validated under parameter perturbations or off-design 

conditions. Sensitivity analysis, by introducing small 

perturbations δθ to system parameters and recalculating 

output errors, can be used to estimate robustness: 𝑆𝜀 =
𝜕𝜀norm

𝜕𝜃
. 

A high sensitivity (Sε) indicates that the reduced model may 

be unreliable under uncertainty, especially in adaptive or 

fault-tolerant control architectures. 

The channel-specific sensitivity to model order reduction 

can often be traced to the underlying physical modes. For 

example, the lateral-to-yaw channel exhibits elevated errors 

under aggressive order reduction, reflecting the loss of cross-

coupled gyroscopic or rotor flapping dynamics, which are 

critical for accurate yaw prediction in coordinated 

maneuvers. Examination of the eigenstructure reveals that 

certain high-frequency or weakly damped modes, though 

energetically subdominant, are essential for capturing 

transient cross-coupling effects. The omission of such modes 

in a first-order model explains the pronounced transient 

distortion observed in Fig. 1 and Fig. 3. 

Compared to Modal Truncation methods reported in 

previous works, Lyapunov Truncation yields similar or 

superior performance in terms of primary channel RMSE and 

peak error. Regarding computational efficiency, Table VII 

demonstrates that second-order reduction achieves a 50% 

decrease in model complexity, with simulation runtimes and 

memory usage decreasing proportionally. Such reductions 

are invaluable for embedded and real-time applications, 

where computational resources are constrained. 

The principal strength of the present approach is its ability 

to achieve significant model simplification while maintaining 

fidelity in the primary control channels, as evidenced by low 

RMSE, narrow confidence intervals, and stability under 

moderate parameter variation. However, limitations include: 

The strict reliance on LTI assumptions, limiting robustness 

under nonlinear or time-varying conditions; Reduced 

reliability in cross-coupling or high-frequency responses at 

lower model orders; The need for a posteriori validation with 

nonlinear simulations or experimental data. 

Future work should address these gaps by validating 

reduced-order models with nonlinear rotorcraft simulations 

or actual flight data, and by incorporating uncertainty 

quantification and adaptive order selection strategies. 

V. CONCLUSION 

This study systematically investigated the application of 

the Lyapunov Truncation (LT) algorithm for model order 

reduction in unmanned rotorcraft flight dynamics, with a 

particular emphasis on quantitative error analysis, channel-

specific fidelity, and operational practicality. The findings 

demonstrate that, for the class of linear time-invariant (LTI) 

rotorcraft models considered, LT-based reduction to second 

order yields a substantial 50% decrease in model complexity, 

while maintaining an average approximation error of 93.32% 

across principal channels. This balance between simplicity 

and fidelity provides a compelling basis for efficient real-time 

control, simulation, and design in embedded or resource-

constrained aerospace platforms. 

The results also reveal that reducing model order below 

two incurs unacceptable losses in both primary and cross-

coupling dynamics, with errors and uncertainty bounds 

exceeding thresholds typically deemed safe for closed-loop 

flight control. The second-order models reliably preserve 

dominant dynamic modes, including critical resonance and 

phase characteristics, essential for maintaining stability 

margins and transient performance. Statistical evaluations, 

including confidence interval and percentile analyses, further 

underscore the robustness of the second-order reduction 

within the tested operating envelope. 

Nevertheless, several critical limitations must be 

acknowledged. The LT algorithm inherently assumes 

linearity and time-invariance, which constrains its 

applicability to the nonlinear, time-varying regimes 

frequently encountered in real-world rotorcraft operations. 

The present study is limited to a single, low-dimensional 

model under fixed parameters; the generalizability of these 

conclusions to high-dimensional, nonlinear, or adaptive 

aerospace systems remains uncertain. Additionally, although 

the frequency-domain analysis indicates satisfactory 

performance in primary channels, notable degradation, 

particularly in phase and cross-coupling fidelity, can arise at 

higher frequencies, potentially impacting stability or 

controller robustness in demanding maneuvers. 

From a broader perspective, this work advances the 

literature by providing a comprehensive, systematically 

validated framework for error assessment and practical 

deployment of LT-based reduced-order models in aerospace 

contexts. The results offer actionable guidelines for engineers 

seeking to implement computationally efficient, yet 

dynamically reliable, control-oriented models. 

Future research should focus on overcoming the 

identified limitations, including extending model reduction 

techniques to nonlinear or parameter-varying systems; 

incorporating a priori error bounds and robustness metrics; 

and validating reduced-order models against nonlinear 

simulations or flight-test data. Additionally, integrating LT-

based reduction with advanced control architectures, such as 

gain-scheduled, adaptive, or data-driven controllers, 

represents a promising direction for enhancing the autonomy 

and resilience of next-generation unmanned aerial vehicles. 

In summary, while the LT approach provides a valuable 

tool for complexity reduction in LTI rotorcraft models, its 

practical deployment in broader aerospace applications 

requires careful consideration of its underlying assumptions 

and empirical validation under representative operating 

conditions. 
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