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Abstract—Identifying epileptogenic zones (EZs) is a crucial 

step in the pre-surgical evaluation of drug-resistant epilepsy 

patients. Conventional methods, including EEG/SEEG visual 

inspection and neurofunctional imaging, often face challenges in 

accuracy, reproducibility, and subjectivity. The rapid 

development of artificial intelligence (AI) technologies in signal 

processing and neuroscience has enabled their growing use in 

detecting epileptogenic zones. This systematic review aims to 

explore recent developments in AI applications for localizing 

epileptogenic zones, focusing on algorithm types, dataset 

characteristics, and performance outcomes. A comprehensive 

literature search was conducted in 2025 across databases such 

as ScienceDirect, Springer Nature, and IEEE Xplore using 

relevant keyword combinations. The study selection followed 

PRISMA guidelines, resulting in 34 scientific articles published 

between 2020 and 2024. Extracted data included AI methods, 

algorithm types, dataset modalities, and performance metrics 

(accuracy, AUC, sensitivity, and F1-score). Results showed that 

deep learning was the most used approach (44%), followed by 

machine learning (35%), multi-methods (18%), and knowledge-

based systems (3%). CNN and ANN were the most commonly 

applied algorithms, particularly in scalp EEG and SEEG-based 

studies. Datasets ranged from public sources (Bonn, CHB-MIT) 

to high-resolution clinical SEEG recordings. Multimodal and 

hybrid models demonstrated superior performance, with 

several studies achieving accuracy rates above 98%. This review 

confirms that AI (especially deep learning with SEEG and 

multimodal integration) has strong potential to improve the 

precision, efficiency, and scalability of EZ detection. To 

facilitate clinical adoption, future research should focus on 

standardizing data pipelines, validating AI models in real-world 

settings, and developing explainable, ethically responsible AI 

systems.  

Keywords—Epileptogenic Zone; Artificial Intelligence; Deep 

Learning; Machine Learning; Stereo-EEG. 

I. INTRODUCTION 

Epilepsy is a neurological disorder characterised by a 

tendency to experience recurrent seizures, caused by 

abnormal electrical activity in the brain. One important 

approach in the management of refractory epilepsy, which is 

epilepsy that does not respond to pharmacological treatment, 

is to accurately determine the epileptogenic zone (EZ) 

through clinical and electrophysiological evaluation [1]-[5]. 

Accurate identification of the EZ is crucial in determining the 

success of surgical intervention, which aims to significantly 

reduce or eliminate seizure frequency. Currently, 

approximately 30% of epilepsy patients experience refractory 

conditions, where the quality of life of patients heavily 

depends on the accuracy of the medical or surgical 

interventions applied [6]-[8]. Data from the World Health 

Organisation (WHO) indicate that over 50 million people 

worldwide have epilepsy, with approximately 30-40% of 

them experiencing refractory epilepsy [9]-[11]. This number 

is projected to continue rising, given the various diagnostic 

and therapeutic challenges still faced in the field of epilepsy 

neurology [12], [13]. 

Conventional diagnostic techniques such as 

electroencephalography (EEG), magnetic resonance imaging 

(MRI), positron emission tomography (PET), and single 

photon emission computed tomography (SPECT) have been 

widely used in clinical practice to identify EZ. However, 

these methods have limitations in terms of inconsistent 

sensitivity and specificity among patients. Additionally, 

interpreting the results of these techniques is often complex 

and highly dependent on the clinician's experience. These 

challenges lead to variations in diagnostic outcomes and may 

result in suboptimal identification of EZ. These challenges 

underscore the need for more advanced and accurate 

diagnostic approaches. The development of alternative 

methods based on cutting-edge technology, particularly AI, 

is expected to address the limitations of conventional 

diagnostic methods [14]-[17]. 

Artificial intelligence (AI) offers potential and 

transformative solutions to address various challenges in the 

field of neurology, particularly in identifying epileptogenic 

zones (EZ) in patients with drug-resistant epilepsy. AI is 

broadly defined as a branch of computer science focused on 

developing algorithms and systems capable of mimicking 

human intelligent behaviour, including the ability to 

understand, learn, and make data-driven decisions. In the 

medical context, AI has advantages in handling large and 

complex datasets, such as electroencephalography (EEG), 

magnetoencephalography (MEG), and various neuroimaging 

modalities like MRI and PET scans [18]–[21]. Through 
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processes such as prediction, classification, segmentation, 

and feature extraction, AI algorithms can improve diagnostic 

accuracy, accelerate clinical decision-making processes, and 

reduce reliance on subjective interpretations by medical 

professionals [22]–[25]. 

A range of artificial intelligence (AI) techniques has been 

applied in epilepsy research, including machine learning 

(ML), deep learning (DL), expert systems (ES), and 

integrated multimodal frameworks that combine multiple 

data types and analytical methods [26]–[29]. ML and DL, in 

particular, have shown strong capabilities in detecting 

intricate patterns within electrophysiological recordings and 

neuroimaging data, patterns that are often challenging to 

discern through manual analysis. Techniques such as ANN, 

SVM, Decision Trees, CNN, and ensemble models like 

random forest and gradient boosting have achieved notable 

accuracy in localizing epileptic foci [30]–[35]. These 

strengths highlight the potential of AI to enhance and 

streamline the pre-surgical assessment of epilepsy, offering 

more precise and efficient diagnostic support. 

Furthermore, AI is not only used for diagnosis but also 

plays a growing role in guiding therapeutic decisions, such as 

identifying suitable candidates for surgical resection, 

neuromodulation, or laser ablation. Accurate identification of 

EZs can lower the failure rate of invasive interventions and 

significantly enhance patients’ quality of life. However, 

despite its promise, the application of AI in this domain still 

faces several challenges, including variability in data quality, 

limited interpretability, and inconsistent validation across 

clinical settings. Given these gaps, it is essential to conduct a 

systematic review of existing AI methods used for EZ 

localization. This includes analyzing the types of algorithms 

implemented, the nature and sources of datasets, and reported 

performance metrics. A clearer understanding of these 

components will help formulate strategic recommendations 

for real-world clinical integration and guide future 

development of more robust, interpretable, and clinically 

reliable AI technologies for managing refractory epilepsy. 

II. METHODOLOGY 

A. Research Question 

This study aims to identify the application of artificial 

intelligence (AI) in determining the epileptogenic zone (EZ). 

We reviewed various scientific articles that have reported AI 

methods and techniques specifically applied to identify the 

EZ in epilepsy patients. The population in this study consists 

of individuals with epilepsy. The intervention of focus is the 

use of various AI algorithms and methods to support the 

accurate identification of EZ. In this study, no comparative 

analysis was conducted, as the review's focus was on a 

comprehensive exploration of available AI methods and 

algorithms. The main goal of this review is to deliver an in-

depth overview of the AI methodologies applied, including 

machine learning (ML), deep learning (DL), and multimodal 

strategies, while assessing their performance in localizing the 

epileptogenic zone (EZ). 

B. Search Strategy 

This systematic review was conducted in 2025, 

employing a structured literature search across major 

scientific databases such as ScienceDirect, Springer Nature, 

and Taylor & Francis. The search strategy utilized 

combinations of relevant keywords derived from MeSH, as 

outlined in Table I. The entire process followed the PRISMA 

guidelines to ensure methodological rigor. To minimize 

selection bias, two independent reviewers performed the 

screening and selection of articles. In instances where 

discrepancies arose between the reviewers, a third 

independent evaluator was consulted to reach a consensus. 

The inclusion criteria were limited to English-language 

publications from the past five years (2020–2024). 

TABLE I.  SEARCH STRATEGY OF THE RESEARCH 

Search strategy 

Database 
ScienceDirect, Springer Nature, and Taylor & Francis 

(2020-2024) 

Limits 
Inclusion criteria included English-language sources and 

studies in human populations. 

Data January 1, 2020 to December 31, 2024 

Search 
Query 

("Epileptogenic Zone") AND ("Detection" OR 

"Diagnosis") AND ("AI" OR "Artificial Intelligence" OR 

"Machine Learning" OR "Deep Learning") 
 

C. Inclusion and Exclusion Criteria 

The inclusion criteria for this review include original 

research articles, experimental studies, and meta-analysis 

reports discussing the application of artificial intelligence 

(AI) for the identification of epileptogenic zones (EZ) in 

epilepsy patients. Only articles reporting evaluations of AI 

model performance, such as accuracy, sensitivity, specificity, 

precision, F1 score, or area under the curve (AUC), were 

included in the analysis. Selected studies must have used AI-

based methods, including machine learning, deep learning, or 

other computational techniques applied for the classification 

or prediction of EZ locations. Exclusion criteria included 

articles not written in English, articles that did not provide 

full-text access, and non-original research publications such 

as narrative reviews, comments, opinions, letters to the 

editor, brief communications, and conference proceedings 

abstracts. Additionally, studies not conducted on human 

subjects or those that did not present quantitative data on AI 

model performance were also excluded from this review. 

D. Selection Process 

The article selection process in this review followed the 

PRISMA guidelines as shown in Fig. 1. After screening the 

titles, abstracts, and full texts, 34 articles were finally selected 

for further analysis. The entire selection and quality 

evaluation process was conducted independently by two 

researchers to ensure objectivity and avoid selection bias. If 

there were differences of opinion between the two 

researchers, the final decision was made through discussion 

with a third independent reviewer. For data analysis 

purposes, each article that met the inclusion criteria was 

extracted using a standard form covering seven main 

categories, namely (1) author name, (2) year of publication, 

(3) artificial intelligence (AI) method applied, (4) type of 

algorithm used, (5) type of data used to identify epileptogenic 

zones, including EEG data, MRI images, PET, or multimodal 

combinations, (6) characteristics of the study population or 

sample, and (7) best model performance based on evaluation 

metrics such as accuracy, sensitivity, specificity, F1 score, 
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and AUC. All successfully extracted data were systematically 

analysed and synthesised, then presented in the form of tables 

and graphical visualisations to illustrate the main findings of 

this review. 

III. RESULTS 

Based on the study search terms, 34 articles were 

reviewed in detail and presented in Table II. Meanwhile,  

Fig. 2 shows the distribution of articles published in the 

2020–2024 period, related to the topic of epileptogenic zone 

identification. Based on the data, it is evident that 2021 and 

2024 were the years with the highest number of publications, 

each contributing 26%, or approximately 9 articles per year. 

Meanwhile, 2022 and 2023 each contributed 18% (6 articles 

per year), indicating a relatively stable publication trend but 

not as intense as the two peak years prior. The year 2020 had 

the fewest publications, at only 12%, or equivalent to 4 

articles, likely influenced by the initial impact of the COVID-

19 pandemic on clinical research activities. This trend 

indicates an increasing interest and need for approaches to 

identify epileptogenic zones in clinical and research contexts, 

particularly in recent years (2021 and 2024), which may be 

linked to the development of technologies such as SEEG, 

HFO analysis, and the application of AI in neurodiagnostics. 

Fig. 3 shows the distribution of artificial intelligence (AI) 

methods used in studies identifying epileptogenic zones. Of 

the total 34 articles described, Deep Learning was the most 

dominant method, used in 44% of publications (15 articles). 

This indicates that Deep Learning is increasingly relied upon 

due to its ability to extract complex patterns from brain 

signals such as EEG and SEEG. Additionally, classical 

Machine Learning was used in 35% of studies (12 articles), 

indicating that this approach remains relevant, particularly 

for smaller datasets or those based on manual features. Multi 

Methods (combining two or more AI techniques) were used 

in 18% of publications (6 articles), reflecting an integrative 

trend in epileptogenic research. Meanwhile, Knowledge-

Based AI, such as expert systems or inference based on brain 

network theory, was only used in 1 article (3%), indicating 

that symbolic approaches are increasingly rare in modern AI 

epileptology. These findings reflect a shift in research from 

conventional approaches toward more automated, high-

precision, and measurable deep learning to support clinical 

decision-making in identifying epileptogenic zones. 

 

Fig. 1. PRISMA process for data collection 
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Fig. 2. Number of articles published in the period 2020-2024 related to the 

identification of Epileptogenic Zones 

 

Fig. 3. Frequency of AI methods used in the identification of Epileptogenic 

Zones

TABLE II.  SELECTED PAPERS ACCORDING TO THE SPECIFIED CRITERIA 

Authors & 

Year 
AI methods 

Algorithm 

used 
Dataset 

Characteristics of 

dataset 

The best 

algorithm 
Performance 

Roger et al., 

2020 [36] 

Machine 

Learning 

Support Vector 
Machine 

(SVM), 

eXtreme 
Gradient 

Boosting 

(XGBoost) 

The "original" dataset of 57 
unilateral mTLE patients and the 

"reduced and working" dataset 

of 46 patients 

Drug-resistant 
patients; pre-

surgical evaluation 

(NPE, EEG, MRI); 
divided into L-

mTLE and R-

mTLE 

XGBoost 
AUROC: 90.2%, 

Accuracy: 77.70% 

Hashemi et al., 

2020 [37] 

Knowledge-

Based AI 

No-U-Turn 

Sampler 
(NUTS), 

Automatic 

Differentiation 
Variational 

Inference 

(ADVI) 

Simulated synthetic data using 

The Virtual Brain (TVB); 

patient-specific MRI and DTI 
data; SEEG data 

Personalized, 

structural 

connectome-based 
data derived from 

non-invasive 

imaging (MRI, 
DTI); used to 

simulate brain 

seizure 
propagation 

No-U-Turn 
Sampler 

(NUTS) 

Accuracy: 100% 

Guo et al., 2020 

[38] 

Deep 

Learning 

Attention 

Neural 

Network 
(AttNN) 

MEG data from 20 epilepsy 
patients (50 ripples and 50 fast 

ripples) 

MEG 306-channel, 

4000 Hz frequency 

sampling, Manual 
labeling by experts 

Attention 

Neural 

Network 
(AttNN) 

Accuracy: 89.3%, 

AUC: 0.88, 
Sensitivity: 84.2%, 

Specificity: 92.3%, 

F1 Score: 88.7% 

Zheng et al., 

2020 [39] 

Deep 

Learning 

EMS-Net 

(CNN 
multiview: 1D 

+ 2D + feature 

fusion) 

MEG data from 20 epilepsy 
patients recorded at Sanbo 

Hospital, Beijing 

306-channel, 1000 

Hz, 300 ms 
epochs, spike & 

non-spike, data 

augmentasi 

EMS-Net 

Accuracy: 99.48%, 
Precision: 99.45%, 

Sensitivity: 99.53%, 

Specificity: 99.43%, 
F1 Score: 99.48%, 

AUC: 0.9998 

Nkengfack et 

al., 2021 [40] 

Machine 

Learning 

Simple 
multilayer 

perceptron 

neural network 
(sMLPNN), 

least-square 

support vector 
machine  

(LS-SVM) 

Bonn University EEG dataset 

500 EEG 

segments, 5 

subsets (A–E), 100 
segments per set, 

173.61 Hz 

sampling, 0.5–40 
Hz filtered 

GDA + 

sMLPNN 

Accuracy: 100%, 

Sensitivity: 100%, 
Specificity: 100%, 

Precision: 100%, 

AUC: 1 

Xia et al., 2021 

[41] 

Deep 

Learning 

Convolutional 
neural network 

(CNN) 

Bern-Barcelona EEG Database 

(3750 pairs of Focal and Non-

Focal signals from 5 epilepsy 
patients) 

intracranial EEG, 

512 Hz, 20 
seconds, 10240 

data points per 

signal; signals 
from epileptogenic 

& non-
epileptogenic 

zones; Data has 

been normalized & 
de-noise 

CNN-based 

STFT+CWT 

feature 
combination 

Accuracy: 91.3% 

Aliyu et al., 

2021 [42] 

Deep 

Learning 

Long short-

term memory 
(LSTM) 

EEG Bonn University 

5 EEG subsets, 

100 segments 

each, duration 23.6 
seconds, sampling 

rate 173.61 Hz 

LSTM with 
optimal 

wavelet 

feature (CCP) 

Accuracy: 99%, 
Precision: 95%, 

Recall: 100%, F1-

score: 98% 
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García et al., 

2021 [43] 

Deep 

Learning 

3D 

convolutional 

neural network 

(3D CNN) 

EPISURG (Postoperative MRI 

dataset of refractory epilepsy 

brain from various institutions, 
total of 430 postoperative 

subjects) 

3D MRI T1-

weighted (T1w), 

resolusi isotropik 1 

mm,  

193 × 229 × 193 
voxel 

3D CNN 
Dice Score (DSC): 

89.2 

Nkengfack et 

al., 2021 [44] 

Machine 

Learning 

Least Squares 

Support Vector 
Machine (LS-

SVM) dengan 

RBF kernel 

Publicly available EEG dataset 

from the University of Bonn 

5 sets (A–E), each of 

100 EEG data of 23.6 
seconds; Condition: 

healthy (with eyes 

open/closed), epileptic 
patients without  

seizures, and epileptic 

patients during seizures 

LS-SVM 

berbasis Jacobi 
Polynomial 

Transform 

(JPT) 

Accuracy: 88.75% - 
100%, AUC: 0.983 

- 1.0 

Torabi et al., 

2021 [45] 

Machine 

Learning 

Multilayer 
Perceptron 

Neural 

Network 
(MLPNN), 

Support Vector 

Machine 

(Linear SVM 

dan RBF SVM) 

Bonn University EEG Dataset 

Epilepsy EEG, 5 

sets (A-E), 100 

segments each, 
duration 23.6 

seconds, sampling 

frequency 173.61 

Hz 

Multilayer 

Perceptron 
Neural 

Network 

(MLPNN) 

Accuracy ABCD/E: 

99.91%, Accuracy 
AB/CD/E: 98.19%, 

Accuracy A/D/E: 

98.5%, Accuracy 
A/E: 100%, 

Accuracy D/E: 

99.84% 

Saeedinia et al., 

2021 [46] 

Deep 

Learning 

Spiking Neural 

Network 

EEG and MRI of epilepsy 

patients (two subjects) 

Multi-channel 
EEG (15 

channels), personal 

MRI, data duration 
≥   hours  patient 

1) and 40 minutes 

(patient 2) 

Spiking Neural 

Network 

Mean Square Error 

        .    ×   ⁻⁶ 

Guo et al., 2021 

[47] 

Machine 

Learning 

Hypergraph 

Learning 

SEEG data from 19 refractory 

focal epilepsy patients (total 

4000 segment signals: 1640 
HFO and 2360 baseline controls) 

SEEG 256-

channel, sampling 

rate 2000 Hz, 
segmentation per 

1000 ms, includes 

interictal and ictal 
data, gold standard 

determined by 

clinical 
epileptologists 

Hypergraph 

SEEG HFOs 

(HSO) 
detector 

Accuracy: 90.7%, 
Sensitivity: 80.9%, 

Specificity: 96.9% 

Vattikonda et 

al., 2021 [48] 

Machine 

Learning 

Epileptor 
model 

(dynamical 

system) + 
Hierarchical 

Bayesian 

inference 

Retrospective SEEG data from 
25 focal epilepsy patients; 

includes synthetic and empirical 

patient data 

SEEG data, 

individualized 

structural 
connectome, 

synthetic seizure 

generation, real 
patient outcome 

labels (Engel I–IV) 

Epileptor-
based 

probabilistic 

hierarchical 
model using 

Bayesian 

inference 

Precision: 80%, 

Recall: 85% 

Wang et al., 

2022 [49] 

Machine 

Learning 

Random Forest, 
Support Vector 

Machine 

(SVM), Multi-
Layer 

Perceptron 

(MLP) 

Temple University Hospital 

EEG Seizure Corpus (TUSZ) 

EEG of patients 

with epilepsy, 
multi-channel 

scalp EEG, 

sampling rate 
(250–512 Hz) 

Random 

Forest 

Accuracy: 97.8%, 

AUC: 99.7%, 
Sensitivity 

(Recall/TPR): 

83.0%, Specificity 
(TNR): 99.6% 

Liu et al., 2022 
[50] 

Deep 
Learning 

Deep 
convolutional 

neural network 

using NAS and 

EEGNet 

EEG dataset (Sets A–E), total 
500 segmen 

Each set consisted 

of 100 fixed-

duration EEG 
segments, from 

healthy and 

epileptic subjects 

Neural 

Architecture 

Search (NAS) 

Accuracy: 76.61%, 

F1-score: 76.49%, 
Kappa coefficient: 

70.76% 

Sunaryono et 

al., 2022 [51] 

Machine 

Learning 

Gradient 
Boosting 

Machines 

(GBM) fusion 
+ Genetic 

Algorithm 

(GA) for 
feature 

selection 

EEG dataset from University of 

Bonn (Set A–E, total 500 trials) 

3-class EEG 
(normal, interictal, 

ictal); 4096 

samples per trial; 
sampling rate 

173.61 Hz 

Gradient 

boosting 
machines 

(GBM) fusion 

+ genetic 
algorithm (GA) 

for feature 

selection 

Accuracy = 100% 

Miao et al., 
2022 [52] 

Multi 
methods 

SVM (Linear & 
RBF Kernel), 

LightGBM, 2-

D 
convolutional 

Interictal ECoG from 7 patients 

with refractory epilepsy (Focal 

Cortical Dysplasia) 

1 hour of 
interactive ECoG 

recording, 2000 Hz 

sampling rate, 
adult and pediatric 

SVM with 
RBF Kernel 

AUC: 0.915 
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neural network 

(CNN) 

patients, number of 

channels 36–76 

Mohammed et 

al., 2022 [53] 

Machine 

Learning 

Artificial 

Neural 

Networks 
(ANNs), Multi-

Layer 

Perceptron 
(MLP) 

Scalp EEG recordings of 21 adult 

patients with focal epilepsy (data 
from Baptist Hospital of Miami, 19 

electrodes,  

10-20 system) 

3-second EEG 

segments (IED vs 

NIED), band-pass 
filtered 0.5–70 Hz, 

sampling rates of 

200/256/512 Hz, 
PCA+ICA 

preprocessing, 

manually 
annotated IEDs 

FC-NNPruned 
(a pruned 

neural network 

using features 
from 4 sub-

bands) 

ROC-AUC: 0.8807 

Wang et al., 
2022 [54] 

Deep 
Learning 

Multiscale 

convolutional 

neural network 
(MSCNN), 

Bidirectional 

LSTM 
(BiLSTM-

AM), Grad-

CAM++ 

Public multicenter SEEG dataset 

(MAYO, FNUSA) and Private 

clinical SEEG dataset 

Multicenter SEEG 

data from epilepsy 

patients, including 
pathological, 

physiological, and 

artifact signals; 
high-frequency 

SEEG data; cross-

subject variation. 

SEEG-Net 

(MSCNN + 
BiLSTM-AM 

+ FDG-loss) 

Accuracy: 93.85%, 

TPR: 87.61%, TNR: 
95.09%, FPR: 

6.24% 

Mohsen et al., 

2023 [55] 

Multi 

Methods 

LSTM, SVM 

(with Fast 

Walsh-
Hadamard 

Transform) 

EEG dari University of Bonn 

500 EEG signals, 

single-channel, 

duration 23.6 s, 
sampling 173.61 

Hz; only class 

C&D (non-seizure 
and seizure) is 

used 

LSTM 

Accuracy: 99.32%, 
Precision: 99.29%, 

Recall: 99.45%, F1-

score: 99.52% 

Sun et al., 2023 

[56] 

Deep 

Learning 

Deep Source 

Imaging 

Framework 
(PDeepSIF) 

MEG data from 29 focal 

epilepsy patients 

MEG interictal 
spike; head model 

from MRI; 

validation with 
iEEG/surgical 

results 

PDeepSIF 
Sensitivity: 77%, 

Specificity: 99% 

Dou et al., 2023 

[57] 

Deep 

Learning 

Autoencoder + 

Adaptive Graph 

Convolutional 
Network 

(GCN) 

SEEG 
(Stereoelectroencephalography) 

& CCEP (Cortico-Cortical 

Evoked Potentials) 

Time-frequency 

SEEG data from 
18 patients, 3 

behavioral states 

(awake, sleep, 
seizure) 

Adaptive 
Graph 

Convolutional 

Network 

Accuracy: 83.38%, 

F1-score: 76.24% 

Li et al., 2023 
[58] 

Machine 
Learning 

RUSBoost 
(Random 

Under 

Sampling + 
Boosting) 

HFO data from 26 epilepsy 

patients (2 hospitals: Tiantan & 

Fengtai Hospital, Beijing) 

113,457 HFO 

(training: 89,844 
pathoHFO + 

23,613 phyHFO), 

testing: 12,695 
pathoHFO + 5,599 

phyHFO 

RUSBoost 

AUC: 0.90, 
Accuracy: 0.863, 

Sensitivity: 0.903, 

Specificity: 0.773, 
F1-score: 0.901 

Ilias et al., 2023 

[59] 

Deep 

Learning 

EfficientNet-

B7, CNN, 
Gated 

Multimodal 

Unit 

EEG database dari University of 

Bonn 

Single-channel 
EEG, consisting of 

healthy, interictal, 

and ictal classes, is 
processed with 

STFT to produce 

3-channel images 
(spectrogram, 

delta, etc.) 

Multimodal 
CNN + 

EfficientNet-

B7 + Gated 
Multimodal 

Unit 

Accuracy: 95.33% - 

98.75% 

Weiss et al., 

2023 [60] 

Multi 

methods 

Graph metrics 

(FR rate-
distance radius, 

mutual 

information) 

iEEG from 23 epilepsy patients 
(UCLA & Thomas Jefferson 

Univ.) 

SEEG, non-REM 

sleep, fast ripples 

>350 Hz, 2 kHz 
sampling 

FR rate-

distance radius 

AUC: 0.75, 

Accuracy: 78.3%, 
Sensitivity: 100%, 

Specificity: 61.5%, 

NPV: 100% 

Kim et al., 2024 

[61] 

Multi 

Methods 

Convolutional 

neural network, 

random forest, 
SVM, 

XGBoost 

EEG from 150 patients (50 

NCSE, 50 ME, 50 BI), 19 
channel, 20 seconds epoch 

EEG 32-channel: 

19 channel, 200 

Hz, bandpass 0.1–
70 Hz, 20s optimal 

epoch 

CNN uses FC 

adjacency 
matrices 

AUC = 0.905 

Murugan et al., 

2024 [62] 

Deep 

Learning 

Convolutional 

Neural 

Network 
(CNN) 

The public EEG dataset, 

consisting of 500 EEG 
recordings, each 23.6 seconds 

long, is divided into 23 segments 

per recording 

EEG 1D signals 

(178 data 
points/segments), 

consisting of 

seizure and non-
seizure classes, 

recorded from 
various individuals 

Convolutional 

Neural 

Network 
(CNN) 

Accuracy: 98.08%, 

Precision: 0.99, 

Recall (Sensitivity): 
0.91, F1 Score: 0.95 
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Stergiadis et al., 

2024 [63] 

Machine 

Learning 

Logistic 

Regression 

iEEG recordings from 20 MRE 

patients (sumber: CRCNS.org) 

Intracranial EEG  

(subdural & depth 

electrodes), 

interictal sleep 

recordings, 
sampling window 

per night, freely 

available, 
anonymized 

Logistic 

Regression 

Accuracy: 82.5% 

(ripple), 75.4% (fast 
ripple) 

Payman et al., 

2024 [64] 

Deep 

Learning 

Convolutional 
Neural 

Network 

(CNN) 

3,560 annotated skull base 

images (from 34 dry human 
skulls) 

Multi-angle, high-

resolution images 
of 10 types of 

foramina; 

annotated with 
bounding boxes 

Convolutional 
Neural 

Network 

(CNN) 

Precision: 90.4%, 

Recall: 89.6% 

Huang et al., 

2024 [65] 

Deep 

Learning 

Temporal 

Convolutional 

Neural 
Network 

dengan Self-

Attention Layer 
(TCN-SA) 

Own EEG dataset (pediatric 
patients with epilepsy), Bonn 

EEG dataset 

multi-channel EEG 

(own dataset, 500 
Hz sampling rate, 

2-second 

segment); single-

channel (Bonn, 

173.61 Hz, 23.6 
sec segment) 

TCN-SA 

Self-dataset 

accuracy: 95.50%; 

Sensitivity: 91.22%; 
Specificity: 98.72%; 

AUC: 0.95 and 

Bonn A-E dataset 

accuracy: 97.37%; 

Sensitivity: 94.88%; 
Specificity: 99.91%; 

F1 Score: 97.30% 

Kantipudi et al., 

2024 [66] 

Multi 

Methods 

GBSO-TAENN 

(Gradient-
based Spider 

Optimization + 

Temporal 
Aware 

Ensemble 

Neural 
Network) 

Bonn EEG dataset & CHB-MIT 

EEG dataset 

EEG signals 

classified as 

normal or seizure, 
multichannel, 

benchmark sets 

GBSO-

TAENN 

Accuracy: 99.1%, 

Specificity: 99.5%, 
Sensitivity: 99% 

Mora et al., 
2024 [67] 

Multi 
Methods 

Logistic 

Regression, 

SVM (linear, 
RBF, 

polynomial), 

NLP 

536 seizure descriptions from 

122 patients (retrospective from 

Italian epilepsy surgery center) 

Text-based seizure 

semiology 
descriptions in 

Italian, labeled by 

EZ side & region; 
highly curated 

clinical EMR 

SVM with 

RBF kernel 
using TF-IDF 

representation 

F1-score: 85.6% 

(temporal vs extra-
temporal 

classification) 

Mercier et al., 
2024 [68] 

Machine 
Learning 

Artificial 

Neural 
Network 

(ANN), 

Logistic 
Regression 

(LR) 

123 paediatric patients, EEG 

data (wakefulness & sleep), 246 
1-minute interictal scalp EEG 

segments 

Clean EEGs 

without artefacts or 
epileptiform 

discharges, using 

standard 10–20 
montage, sampling 

rate 256/512 Hz 

ANN 

Accuracy: 64.8%, 

Sensitivity: 76.7%, 

Specificity: 43.0% 

Krishnamoorthy 

et al., 2024 [69] 

Deep 

Learning 

Optimized 
Deep 

Convolutional 

Neural 
Network 

(DCNN) 

Bonn EEG dataset, New Delhi 

EEG dataset 

Bonn EEG dataset 
is categorized into 

3 (Normal, 

Interictal, Seizure); 
and New Delhi 

dataset is 

categorized into 3 
classes (ictal, 

preictal, interictal). 

DCNN + 
Genetic 

Algorithm 

(GA) + Cross-
Validation 

(CV) 

Accuracy: 93.2%, 
Precision: 90%, 

Recall/Sensitivity: 

90%, Specificity: 
93%, F1-score: 

0.90, AUC: 0.939 

 

Based on a systematic review of 34 scientific articles, 

various artificial intelligence (AI) approaches have been used 

to detect epileptogenic zones (EZs) with varying performance 

and characteristics. These methods include deep learning, 

conventional machine learning, multi-method (hybrid) 

approaches, and knowledge-based AI systems. Each has its 

own advantages in specific aspects, such as accuracy, 

scalability, interpretability, and robustness to data variability. 

However, each approach also faces limitations, ranging from 

data requirements, modelling complexity, to clinical validity. 

Table III summarises the types of AI methods used in studies 

identifying epileptogenic zones, along with the main 

advantages and limitations of each approach. 

Fig. 4 shows the frequency of AI algorithm use in 

identifying epileptogenic zones based on all articles reviewed 

(34 articles). The two most dominant algorithms are 

convolutional neural network (CNN) and artificial neural 

network (ANN), each used in 26% of studies (9 articles). This 

reflects researchers' tendency to rely on neural network 

models, both in the form of convolutional networks for 

extracting spatial-temporal features from brain signals and 

classical feedforward networks for classification. 

Furthermore, Support Vector Machine (SVM) and ensemble 

algorithms (such as XGBoost or GBM) were used in 9% of 

studies (3 articles) each, indicating that conventional machine 

learning approaches remain relevant, especially in situations 

with limited data. Long short-term memory (LSTM), which 
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focuses on temporal dynamics, was used in 6% (2 articles) of 

studies, while random forest and logistic regression were 

each used in only 3% of studies (1 article). Another 18% of 

studies (6 articles) used other methods such as NUTS, NAS, 

or adaptive graph algorithms that were not explicitly 

categorised. This distribution reflects the trend that while 

neural network algorithms dominate, combination or 

alternative approaches remain necessary to address the 

complexity of SEEG/EEG data in the context of epilepsy. 

 

Fig. 4. Frequency of algorithms used in the identification of Epileptogenic 

Zones 

In addition, Fig. 5 presents the frequency distribution of 

the use of various types of datasets in studies identifying 

epileptogenic zones, based on an analysis of a number of 

scientific articles. It can be seen that scalp EEG is the most 

widely used dataset, accounting for 53% of all studies. This 

reflects that scalp EEG remains the primary and most 

accessible method in both research and clinical practice, 

despite its limitations in spatial resolution. On the other hand, 

SEEG (Stereo-EEG), an invasive technique with high spatial 

and temporal resolution, was used in 12% of studies, 

followed by MRI (11%) and MEG (9%), both of which play 

a crucial role in non-invasive mapping of brain anatomy and 

function. iEEG (Intracranial EEG) datasets were also used in 

6% of studies, indicating a trend toward increased use of data 

from subdural or intracortical electrodes. Meanwhile, high-

frequency oscillation (HFO), Electrocorticography (ECoG), 

and clinical descriptions were each used in only 3% of 

studies, indicating that although highly informative, such data 

remain limited in use due to access constraints, costs, and the 

need for invasive procedures. This pattern highlights that 

while scalp EEG remains dominant due to its non-invasive 

and easily accessible nature, there is an increasing utilisation 

of multimodal datasets (such as SEEG, MRI, and MEG) to 

achieve more precise identification of epileptogenic zones, 

particularly in the context of refractory epilepsy requiring 

surgical intervention. 

 

Fig. 5. Frequency of datasets used in the identification of Epileptogenic 

Zones 

IV. DISCUSSION 

This systematic review shows a growing number of 

publications between 2020 and 2024 discussing the 

application of artificial intelligence (AI) in identifying 

epileptogenic zones, a crucial area in the management of 

refractory epilepsy. A total of 34 articles were analysed, with 

a significant increase in publications in 2021 and 2024. This 

reflects advancements in AI technology and the urgency to 

improve the accuracy of epileptogenic zone identification, 

particularly in the context of pre-surgical evaluation. The 

review also highlights a shift in approach from conventional 

methods toward deep learning techniques, as well as 

increased use of high-resolution Stereo-EEG (SEEG) data. 

Deep learning methods are the most dominant AI approach 

used, appearing in 44% of studies. Architectures such as 

CNN, LSTM, and TCN have proven highly effective in 

extracting spatio-temporal features from EEG/SEEG signals. 

For example, the SEEG-Net model (Wang et al., 2022), 

which combines CNN, BiLSTM, and Grad-CAM++, 

achieved an accuracy of 93.85% on a multicenter dataset 

[54]. Similarly, the TCN-SA model (Huang et al., 2024) 

demonstrated high performance on both internal and external 

datasets [65]. These results reinforce the potential value of 

deep learning in mapping epileptogenic zones with high 

precision. 

TABLE III.  SUMMARY OF TYPES OF AI METHODS, THEIR ADVANTAGES AND LIMITATIONS IN THE CONTEXT OF EPILEPTOGENIC ZONE IDENTIFICATION 

AI Method Advantages in Epileptogenic Zone Identification Limitations in Epileptogenic Zone Identification 

Deep Learning 

1. Automatically extracts spatial-temporal features from EEG/SEEG 
data. 

2. Highly accurate (accuracy >90%) with SEEG. 

3. Suitable for large and complex datasets. 

1. Requires large, well-annotated datasets. 

2. Low interpretability (black-box). 
3. Prone to overfitting on small datasets. 

Machine Learning 

1. Suitable for small to medium-sized datasets. 

2. Faster to train and more interpretable. 

3. Can be optimized through feature selection or transformation. 

1. Relies on manually extracted features. 

2. Less effective for raw EEG signal. 

3. Lower performance than DL overall. 

Multi-method 

(Hybrid) 

1. Combines strengths of multiple models (e.g., CNN + SVM). 

2. More robust and adaptive. 
3. Can enhance generalization to noisy or varied data. 

1. More complex to design and validate. 
2. Harder to reproduce without detailed 

documentation. 

3. Requires tuning many parameters. 

Knowledge-Based AI 
1. Can integrate clinical knowledge and brain network theory. 

2. More transparent and interpretable (rule-based systems). 

1. Less flexible for real-world data variability. 

2. Not suitable for raw EEG signals. 

3. Rarely used and less scalable. 
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On the other hand, conventional machine learning 

methods such as SVM, Random Forest, and XGBoost are still 

used in certain conditions, particularly when the dataset size 

is limited or when better interpretability is required. A study 

by Roger et al. (2020) used a combination of SVM and 

XGBoost to classify mTLE laterality, achieving an AUROC 

of 90.2% [36]. Although simpler, this approach remains 

highly relevant, especially in clinical settings with data 

limitations or the need for transparent interpretation. Some 

studies also explore multi-method and hybrid approaches, 

such as Miao et al. (2022), who combined SVM, LightGBM, 

and CNN [52], and Kantipudi et al. (2024) with the GBSO-

TAENN model, which integrates spider algorithm 

optimisation (GBSO) with temporal neural networks [66]. 

Such hybrid models can leverage the strengths of each 

algorithm and demonstrate superior performance in handling 

the complexity of brain signals. 

This review also highlights trends in dataset usage. Scalp 

EEG is the most commonly used dataset type (53%), 

primarily due to its non-invasive nature and availability in 

open-access formats (e.g., Bonn EEG, CHB-MIT). However, 

the most accurate results are generally found in studies using 

SEEG or iEEG datasets (12%), which have high spatial and 

temporal resolution. This is evident in the study by Zheng et 

al. (2020) using MEG, which achieved an accuracy of 

99.48% and nearly perfect AUC (0.9998) [39]. Studies using 

SEEG data produce very high performance because they are 

able to record brain electrical activity in depth and with 

precision. Guo et al. (2021) using an HSO Detector based on 

hypergraph learning achieved an accuracy of 90.7% and 

specificity of 96.9% [47]. SEEG data offers advantages over 

scalp EEG in revealing hidden epileptogenic activity patterns 

within brain structures, particularly in patients with complex 

focal epilepsy. Recent approaches also demonstrate the use 

of graph models, such as graph convolutional networks 

(GCN) in the study by Dou et al. (2023), which model the 

relationships between SEEG channels as an adaptive graph 

[57]. This approach treats the brain as a complex 

interconnected network, reflecting the new perspective that 

epileptogenic zones are not fixed locations but part of the 

brain's dynamic network system. 

Although the models generally perform well, many 

studies still face limitations, particularly in terms of small 

sample sizes, reliance on synthetic data (such as TVB), and 

lack of validation on external datasets or clinical outcomes 

(such as post-surgical Engel classification). This limits the 

application of these models in real-world contexts and needs 

to be addressed in future studies. Another challenge is the 

lack of standardisation in EEG/SEEG preprocessing across 

studies. Filtering, segmentation, and HFO annotation 

techniques vary, making it difficult to replicate or compare 

studies. Differences in HFO definitions (pathological vs. 

physiological) also add complexity. Therefore, clinical 

consensus and open standards for invasive EEG signal 

processing are needed. From a clinical perspective, these 

findings hold great potential. AI can accelerate the 

identification of epileptogenic zones, reduce SEEG 

monitoring time, and assist in electrode placement and 

epilepsy surgery planning. Models such as SEEG-Net and 

HSO Detector have the potential to be integrated into  

clinical decision support systems (CDSS) at epilepsy surgery 

centres [70]-[72]. 

However, to date, the application of AI in clinical settings 

remains limited. Most models have not been prospectively 

tested in real-world practice, and there are still ethical, 

regulatory, and interpretability challenges [73]-[76]. 

Transparent and explainable AI models are crucial in the 

context of high-stakes surgical decision-making [77]-[81]. 

For future development, research should focus on integrating 

multimodal data (SEEG + MRI + DTI + clinical), tracking 

long-term outcomes, and conducting prospective multi-

centre clinical trials. Collaboration between neurologists, 

epileptologists, and AI scientists is essential to  

develop robust, clinically valid systems ready for 

implementation [82]-[85]. Additionally, future research 

should also emphasize transparent documentation of the AI 

model structure, preprocessing procedures, and patient 

demographic details. Moreover, it is important to report post-

surgical clinical outcomes, such as those measured by the 

Engel scale, to assess the practical efficacy of EZ predictions 

beyond statistical metrics alone. 

V. CONCLUSIONS 

This review confirms that artificial intelligence (AI), 

particularly deep learning methods based on SEEG and 

multimodal approaches, has great potential to revolutionise 

the process of identifying epileptogenic zones. Models such 

as CNN, LSTM, and hybrid networks that combine spatial-

temporal features have demonstrated high accuracy in 

detecting abnormal patterns in EEG and SEEG data. This 

advantage is reinforced by consistent results across various 

studies, especially those using high-quality data such as 

SEEG and MEG, as well as validation against clinical 

outcomes. AI enables more objective, efficient, and scalable 

exploration of epileptogenic zones across diverse patient 

populations. However, for AI to be widely implemented in 

clinical practice, a series of important prerequisites are 

required, including: multi-centre validation, standardisation 

of preprocessing and data annotation processes, and 

transparent reporting of model structures and clinical 

outcomes. Key challenges also include the need for 

explainable AI models, integration with clinical decision 

support systems (CDSS), and attention to ethical and medical 

data privacy aspects. Bridging the gap between research and 

clinical practice requires coordinated efforts from scientists, 

clinicians, and tech developers. With the right direction of 

development, AI has the potential to become a cornerstone of 

future precision epileptology practice. The combination of 

AI's capabilities in large-scale and complex data analysis, 

along with clinicians' expertise in contextual interpretation 

and medical decision-making, will create a strong synergy in 

the management of refractory epilepsy. In the long term, AI 

systems integrated into clinical workflows can contribute to 

improved diagnostic accuracy, pre-surgical evaluation 

efficiency, surgical success, and overall quality of life for 

epilepsy patients. 
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