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Abstract—Efficient energy management in Internet of 

Things (IoT) devices is critical in dynamic, resource-constrained 

operational environments. This study proposes the Queen 

Honey Bee Migration (QHBM) optimization algorithm for 

managing Li-ion battery performance in IoT systems, 

employing the Shepherd battery model to simulate the nonlinear 

discharge behavior under varying load conditions. Three 

simulation scenarios of increasing complexity (5, 10, and 20 

monitoring points) are used to represent urban operational 

dynamics. The performance of QHBM is quantitatively 

compared with four conventional optimization algorithms 

seperti Particle Swarm Optimization (PSO), Differential 

Evolution (DE), Genetic Algorithm (GA), and Firefly Algorithm 

(FA). Results show that QHBM maintains a current range of 

3.80–5.20 A and a voltage range of 3.65–3.95 V, with State of 

Charge (SoC) predictions between 75–98%. It also achieves the 

fastest computation time (0.42–1.20 seconds) and demonstrates 

more stable performance under high-load dynamic scenarios 

compared to the other methods. This approach provides an 

adaptive and efficient optimization framework to support 

energy-aware decision-making in IoT systems operating in 

energy-constrained urban environments. 

Keywords—Battery Optimization; Energy Efficiency; Internet 

of Things (IoT); Queen Honey Bee Migration (QHBM); Tactical 

IoT Applications. 

I. INTRODUCTION 

The integration of Internet of Things (IoT) technologies 

into emergency and tactical operations has enabled real-time 

sensing, secure communication, and autonomous decision-

making in high-risk environments [1]–[2]. However, energy 

efficiency and adaptive power management remain pressing 

challenges, especially when IoT devices are deployed in 

time-critical, communication-constrained, and infrastructure-

less urban settings [3]–[4]. In such missions, including 

search-and-rescue, disaster response, or security operations, 

the uninterrupted operation of sensors and actuators becomes 

crucial to mission success [5]. 

While numerous optimization methods—such as Particle 

Swarm Optimization (PSO), Genetic Algorithm (GA), and 

Differential Evolution (DE)—have been applied to IoT 

energy management [6]–[7], their convergence speed, 

adaptability, and robustness are often inadequate for the 

rapidly changing and unpredictable conditions found in 

tactical operations [8]. Prior research in emergency IoT 

deployments has highlighted the need for real-time 

optimization models that can dynamically adapt to shifting 

priorities, device failures, and mission constraints [9]. 

In response to this gap, this study introduces the Queen 

Honey Bee Migration (QHBM) algorithm, a novel bio-

inspired optimization method derived from the behavior of 

queen bees seeking optimal nesting sites. Unlike standard 

swarm intelligence methods, QHBM incorporates controlled 

stochastic migration, dynamic search radius adjustment, and 

convergence regulation to maintain solution diversity while 

enhancing global exploration and local exploitation [10]–

[11]. 

The algorithm is validated through simulations of high-

risk emergency scenarios using the Shepherd Li-ion battery 

model, which allows accurate modeling of real-world battery 

behavior with limited input data [12]. QHBM is compared to 

PSO, GA, DE, and Firefly Algorithm (FA) across multiple 

performance metrics, including current estimation, voltage 

prediction, state of charge (SOC), and computation time. This 

research contributes an adaptive and computationally 

efficient energy management solution tailored for mission-

critical IoT systems, offering improved resilience, 

responsiveness, and power optimization under volatile 

operational conditions [13]. 

Furthermore, while existing swarm-based algorithms 

such as PSO and GA have demonstrated general applicability 

in wireless sensor networks and IoT resource optimization, 

their performance tends to degrade under high-uncertainty, 

real-time decision environments—particularly where device 

failures, latency constraints, and unpredictable energy usage 

are critical [14]. These conditions are typical in emergency 

scenarios where recharging or replacing nodes is infeasible, 

and communication interruptions may lead to data loss or 

mission delays. QHBM addresses these limitations by 

introducing a decentralized and migration-based search 

mechanism, inspired by the strategic relocation behavior of 

queen bees in uncertain habitats. This migration is not purely 

random, but guided by sector-based probabilities, 

convergence control factors, and dynamic search radius 

adaptation—enabling the algorithm to maintain population 

diversity and reduce the risk of premature convergence. 

Unlike conventional techniques that often stagnate in local 
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optima or require manual parameter tuning for each use case, 

QHBM offers built-in adaptability to balance global 

exploration and local refinement. Its lightweight 

computational structure further enhances applicability in 

edge computing or constrained environments where 

computational overhead must remain minimal. By targeting 

both algorithmic innovation and operational feasibility, this 

study offers a dual contribution: a novel metaheuristic 

framework rooted in bio-inspired behavior, and a practical 

energy management model deployable in IoT systems 

operating under time pressure, mission risk, and 

environmental unpredictability. 

The research contribution is the development of a novel 

Queen Honey Bee Migration (QHBM) algorithm tailored for 

adaptive battery optimization in high-risk IoT applications, 

along with its integration into a real-time simulation 

framework based on a Shepherd-type Li-ion model. This 

contribution includes algorithmic innovations in swarm-

based optimization and an evaluation under dynamic, 

mission-critical scenarios.  

Despite recent advancements in IoT energy optimization, 

existing algorithms such as PSO, GA, and DE often struggle 

to adapt effectively in high-risk, time-sensitive environments 

due to limitations in convergence flexibility and 

responsiveness to dynamic mission constraints. These 

challenges are especially prominent in tactical operations 

where device mobility, intermittent communication, and 

energy-critical decision-making are central. 

The research contribution is the development of a novel 

Queen Honey Bee Migration (QHBM) algorithm that 

introduces a bio-inspired migration mechanism, combining 

sector-based movement, stochastic exploration, and adaptive 

convergence control. Unlike conventional swarm algorithms, 

QHBM is designed to dynamically balance global search and 

local exploitation in volatile conditions, making it 

particularly suitable for energy management in mission-

critical IoT deployments. 

Unlike conventional swarm algorithms such as PSO, 

which often face challenges related to premature convergence 

and limited adaptability in non-stationary environments, 

QHBM introduces a bio-inspired migration mechanism that 

dynamically adjusts search direction and exploration 

intensity. This makes QHBM uniquely suited for real-time 

energy optimization in tactical missions where operational 

conditions can change rapidly and unpredictably. 

II. RELATED WORKS 

A. Battery Management for IoT Devices 

Energy management remains one of the most critical 

challenges in the deployment and long-term operation of 

Internet of Things (IoT) devices, particularly in mission-

critical environments that demand continuous performance 

under constrained energy conditions, such as hostage rescue 

operations in urban conflict zones [20]-[21]. Numerous 

strategies have been proposed to optimize energy usage, 

including the scheduling of device power cycles, limiting the 

frequency of data transmissions, applying duty-cycling 

techniques, and adapting device operation based on 

environmental inputs [22]. These methods often rely on static 

or pre-defined configurations, which may not be responsive 

enough to the dynamic energy demands that arise in 

emergency or time-sensitive scenarios. Static approaches risk 

depleting the device’s battery prematurely or failing to 

maintain sufficient sensing and communication capabilities 

during critical moments [23]-[24]. To address these 

limitations, recent studies have introduced the use of 

predictive models based on machine learning and statistical 

methods to forecast energy usage patterns. These models 

enable devices to adjust their operating parameters 

proactively, reducing energy waste while ensuring 

continuous operation. For example, adaptive power control 

strategies can be guided by past energy consumption trends, 

user activity recognition, or environmental signals. Such 

approaches highlight the growing trend toward intelligent and 

self-managing IoT systems, especially in environments 

where manual intervention is not feasible. In the context of 

security and emergency response operations, real-time 

adaptability becomes particularly vital [25]-[26]. IoT devices 

must be able to make autonomous decisions under uncertain 

and changing conditions. Therefore, energy management 

systems must evolve beyond static rule-based logic toward 

adaptive, context-aware frameworks that can prioritize tasks 

and modulate performance dynamically based on mission 

requirements and residual power levels [27]-[28]. 

B. Optimization Algorithm in IoT System 

Optimization algorithms play a pivotal role in enhancing 

the performance of IoT systems, particularly in the domains 

of task scheduling, resource allocation, and energy 

consumption minimization. Traditional techniques such as 

Genetic Algorithms (GA) [29,30], Particle Swarm 

Optimization (PSO) [31]-[32], Ant Colony Optimization 

(ACO), and other nature-inspired methods have been widely 

utilized to address these challenges [33]-[34]. While these 

algorithms have shown efficacy, they often encounter issues 

such as premature convergence to local optima, sensitivity to 

initial conditions, and prolonged convergence times, 

especially in large-scale, dynamic IoT environments [31]-

[35]. To overcome these shortcomings, the Queen Honey Bee 

Migration (QHBM) algorithm has been proposed as a novel 

metaheuristic approach. Inspired by the natural migration 

patterns of queen bees in search of optimal hives, QHBM 

introduces a diverse and exploratory solution search 

mechanism. This allows the algorithm to maintain population 

diversity, avoid local optima traps, and accelerate 

convergence toward global solutions [17]-[31]. The 

stochastic migration process helps balance the trade-off 

between exploration and exploitation, making QHBM 

suitable for real-time IoT applications where adaptability and 

robustness are essential [27]-[36]. Comparative studies in 

related domains have demonstrated that QHBM outperforms 

several conventional algorithms in terms of convergence 

speed and solution quality, particularly in high-dimensional 

search spaces. Furthermore, QHBM's structure allows for 

potential hybridization with machine learning or fuzzy logic 

systems, creating opportunities for even more responsive and 

intelligent IoT control mechanisms [37]-[38]. 

C. IoT Utilization in Hostage Rescue Operations 

The integration of IoT technology in tactical operations 

such as hostage rescue has opened up new possibilities for 
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real-time monitoring, coordination, and deci-sion-making. In 

such high-stakes scenarios, IoT devices can be deployed for 

covert surveillance, personnel tracking, environmental 

sensing, and secure communi-cation between ground units 

and command centers [39]-[40]. The use of wearable sensors, 

drones, and em-bedded systems enhances situational 

awareness and allows teams to respond swiftly and 

effectively in dy-namic environments. However, the biggest 

technical constraint in these scenarios remains the limited 

battery capacity of IoT devices. As these operations often 

take place in unpredictable, hostile, or infrastructure-less set-

tings, recharging or replacing devices is not always feasi-ble. 

Therefore, the development of intelligent energy 

management strategies is critical to ensure continuous device 

operation throughout the mission [41]-[42]. In this context, 

this research contributes by incorporating the QHBM 

algorithm into the energy management system of IoT devices, 

with a focus on its application in hostage rescue operations 

[34]. By enabling real-time optimiza-tion of power usage, 

QHBM can help prolong device life while maintaining 

essential functions such as sensing, data transmission, and 

secure communication. Despite the growing body of 

literature on energy-aware IoT sys-tems, the specific 

application of adaptive optimization algorithms like QHBM 

in mission-critical rescue scenari-os remains largely 

underexplored [43]. This work seeks to bridge that gap by 

proposing a novel framework that enhances operational 

effectiveness and sustainability of IoT deployments in 

conflict and disaster settings [44]. 

D. Intelligent Energy Prediction Models for IoT Systems 

As the complexity and penetration of IoT systems in 

various domains increases, the ability to predict energy 

consumption patterns becomes critical, especially in the 

context of tactical operations such as hostage rescue that 

heavily rely on the continued operation of IoT de-vices. 

Traditional rule-based approaches are often inad-equate in 

dealing with the high dynamics of energy de-mand. 

Therefore, intelligent predictive models based on artificial 

intelligence (AI) and machine learning (ML) have emerged 

as potential solutions for more adaptive and proactive energy 

management [11], [45]-[46]. Various ML techniques have 

been applied to predict the energy consumption of IoT 

devices [41]-[47], including Artificial Neural Networks 

(ANN), Support Vector Machines (SVM), and Recurrent 

Neural Networks (RNN) [48]. For example, deep learning-

based predictive models with attention mechanisms and 

recurrent processing have been shown to effectively capture 

long-term relation-ships in the energy consumption patterns 

of IoT devices [49]. This technique allows the system to 

prioritize im-portant features in predictions, and adjust power 

man-agement strategies automatically [42]. Another study 

used Long Short-Term Memory (LSTM) to address non-

linear patterns in time series data, and showed supe-rior 

prediction accuracy compared to conventional ap-proaches 

[16]. In smart home-based systems, the inte-gration of IoT 

and ML not only enables real-time moni-toring of energy 

consumption but also improves anom-aly detection and 

enables more efficient power usage strategies [9]. 

Reinforcement Learning has also been utilized for sequential 

decision making under uncertain-ty, allowing devices to learn 

from environmental interac-tions and update energy saving 

policies over time. 

However, the integration of ML into IoT devices pre-

sents its own challenges. Limited computing power and 

memory on edge devices are often a constraint. There-fore, 

hybrid approaches such as offloading to the cloud or edge 

servers, as well as the use of lightweight models, are solutions 

that are being investigated [50]. Other challenges include the 

need for adequate training data, the risk of overfitting, and 

scalability limitations. In the context of this research, ML-

based energy prediction models can complement 

optimization algorithms such as QHBM by providing 

prospective insights into energy needs. This integration can 

result in an energy manage-ment system that is not only 

reactive but also anticipa-tory [51]-[52]. Although ML-based 

energy prediction models have been applied in various IoT 

systems, their application in emergency scenarios such as 

hostage res-cue is still very rarely explored [53]-[54]. 

Therefore, this integrative approach is a new contribution in 

intelligent optimization-based IoT energy management [55]-

[56]. Some remarks regarding the reported approaches in the 

estimation of battery equivalent circuit parameters are 

presented in Table I. 

TABLE I. RELATED WORKS 

Author Target Method Metaheuristic Model Battery 

[45] 
Energy 

inefficiency 

Machine 

Learning 

and Deep 
Learning 

√ 

Battery 

Management 

Systems 

[46] RMSE 
Artificial 
ecosystem 

optimizer 

√ 
Shepherd 

model 

[47] RMSE 
Equilibrium 

algorithm 
√ nRC-model 

[48] RMSE 

Bayesian 

neural 

network 

X 
Pseudo-

twodimensional 

[49] 

Least 

square 

error 

Gradient-

based 

algorithm 

√ 
Doyle fuller 

Newman model 

[50] MSE 

Extended-

kernel 
iterative 

recursive 

least square 

approach 

X 
Second-order 

RC 

     

[51] 
Sum square 

error 

Particle 

swarm 

optimizer 

√ 
Reduced partial 

differential 

[52] RMSE 

Mixed 

swarm 

cooperative 

PSO 

√ 
Fractional 

order 

[53] RMSE 

Extended 
Kalman 

filtering 

and 

recursive 

least square 

X 
Second-order 

RC 

[54] 

Least 

square 

error 

Neural 

network 

and genetic 

algorithm 

√ 
Thevenin 

circuit 

 

A systematic review of the literature on battery equivalent 

circuit parameter estimation reveals a complex spectrum of 

methodologies spanning metaheuristic, machine learning, 
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and deep learning approaches, where various optimization 

algorithms such as artificial ecosystem optimizer, 

equilibrium algorithm, particle swarm optimizer, and neural 

network are applied to identify battery model parameters, 

with a diversity of evaluation metrics (RMSE, MSE) 

indicating ongoing efforts to overcome the limitations of 

existing algorithms, such as premature convergence, 

sensitivity to local optimization, and high computational 

complexity of Shepherd, nRC, and Thevenin circuit-based 

battery models [57]-[58]. 

III. MATERIALS AND METHODS 

To address the challenges of real-time battery 

optimisation in tactical IoT implementations, this study 

implements the Queen Honey Bee Migration (QHBM) 

algorithm with specific adjustments for high-risk operational 

constraints. The biological analogy of queen bee migration is 

translated into algorithmic form through five key 

components: (1) a sector-based search strategy inspired by 

the queen bee's location exploration; (2) a dynamic fitness 

function tailored to the multi-objective trade-off between 

degradation, energy consumption, and operational costs; (3) 

stochastic migration probability for exploration; (4) a 

convergence control factor to manage exploitation intensity; 

and (5) an adaptive step size mechanism to enhance search 

precision. These elements are integrated into the algorithm's 

core to ensure its responsiveness in rapidly changing field 

conditions, such as fluctuating node availability and evolving 

mission objectives.[59]-[61]. 

A. System Describtion 

Fig. 1 (a) The proposed system architecture represents a 

methodological breakthrough in energy management of 

Internet of Things (IoT) devices for hostage rescue operations 

in urban conflict zones, implementing the Queen Honey Bee 

Migration (QHBM) algorithm as an innovative and adaptive 

optimization mechanism [62]-[63]. Fig. 1 (b) the QHBM 

optimization process, starting from population initialization, 

fitness evaluation, and battery simulation. The loop continues 

until convergence or maximum iteration is reached. Then, 

objectives such as system efficiency, LCOE, and CO₂ 

reduction are computed, producing optimal battery current 

and performance metrics. The system is comprehensively 

designed to address the complex challenges of resource 

management in highly dynamic and critical operational 

environments, with a primary focus on continuous 

monitoring of the battery state of charge (SoC) and state of 

health (SoH) [64] through a sophisticated optimization 

module [65]-[66]. 

Through real-time power allocation mechanisms and 

dynamic resource strategies, the system is able to provide 

reliable and efficient technological support for rescue teams, 

ensuring the availability and continuity of IoT devices during 

rescue operations [67]-[68]. QHBM's algorithmic approach 

enables intelligent exploration and exploitation of energy 

resources, adapting power consumption and distribution to 

constantly changing operational needs, thereby significantly 

improving the response capability and resilience of devices 

in high-risk and time-pressured hostage rescue scenarios 

[69]-[70]. 

 
(a) 

 
(b) 

Fig. 1.  IoT device energy optimization system architecture with QHBM 

algorithm (a) system research (b) QHBM-Based battery optimization process  

B. The Li-Ion Battery Model 

The study used a Shepherd-type Li-ion battery model, 

chosen because of its ability to provide an accurate 

representation with minimal data requirements from 

manufacturer specifications [71]-[72]. This approach allows 

for comprehensive macro-level simulations to describe the 

battery's voltage and current behavior. The Shepherd model 

is implemented through a simple equivalent circuit with a 

controlled voltage source and internal resistance, allowing for 

dynamic prediction of the battery's terminal voltage [73]-

[74]. This structure offers an analysis of the battery's 

characteristics in both charging and discharging modes [75]. 

The model's strength lies in its ability to capture the 

complexity of battery behavior with an efficient 

mathematical approach, ideal for optimizing energy 

management in dynamic operational scenarios. 
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The battery model utilized in the framework is the 

Shepherd-type Li-ion equivalent circuit, chosen for its 

balance between accuracy and computational simplicity. 

Equations (1)–(4) represent open-circuit voltage behavior, 

exponential decay zones, and internal resistance effects. 

While these equations provide foundational dynamics, we 

recognize that real-world uncertainties—such as variations in 

internal resistance (R) or polarization coefficient (K)—can 

introduce SoC and SoH estimation errors. Therefore, Monte 

Carlo simulations were applied to assess sensitivity, and error 

bounds were included for each battery prediction scenario 

Table II. These analyses confirm that QHBM maintains 

accuracy within ±2.5% SoC deviation under parametric 

perturbations. 

𝑉𝑏 = 𝐸0 −𝐾 (
𝑄

𝑄 × 𝑖𝑡
) 𝑖 − 𝑅 × 𝑖 + 𝐴 × 𝑒−𝐵×𝑖𝑡 (1) 

The Shepherd model presents a complex mathematical 

The Shepherd model presents a complex mathematical 

formulation to describe the electrochemical characteristics of 

batteries, where 𝐸0 represents the open-circuit voltage at full 

capacity, 𝐾 as the polarization coefficient, 𝑄 describes the 

battery capacity through the actual charge discharged, 𝑖 as the 

battery current, 𝑅 is the internal resistance, 𝐴 indicates the 

amplitude of the exponential zone, and 𝐵 represents the 

inverse time constant (1) [76]-[77]. Modifications to this 

model integrate the effects of polarization resistance and 

polarization voltage components into the discharge model, 

resulting in a comprehensive mathematical approach to 

understanding the dynamics of energy transformation in 

batteries Equation (2): 

𝑉𝑏 = 𝐸0 − 𝐾 (
𝑄

𝑄 × 𝑖𝑡
) 𝑖∗ − 𝐾 (

𝑄

𝑄 × 𝑖𝑡
) 𝑖𝑡 − 𝑅 × 𝑖

+ 𝐴 × 𝑒−𝐵×𝑖𝑡 
(2) 

Where 𝑖∗ denotes the filtered current. The Figure of the Li-

ion battery model is shown in the following Fig. 2. 

 

Fig. 2.  Li-Ion battery model 

In addition, the battery SOC of the battery can be 

calculated as follows (3): 

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶0 −
1

𝑄
∫ 𝑖𝑑𝑡 (3) 

The initial State of Charge (SOC₀) serves as a pivotal 

reference parameter in characterizing the dynamic energy 

transitions within lithium-ion (Li-ion) batteries, as illustrated 

in Fig. 2. During the discharge process, the voltage profile 

typically delineates three distinct regions where 𝑉𝑚𝑎𝑥 

(Voltage Full) represents the voltage at maximum charge 

capacity, 𝑉𝑒𝑥𝑝 (Voltage Exponential) indicates the voltage at 

the termination of the exponential decay phase, and 𝑉𝑛𝑜𝑚 

(Voltage Nominal) denotes the nominal voltage under 

standard operating conditions. These voltage markers 

collectively provide a comprehensive framework for 

understanding the electrochemical behavior and energy 

depletion patterns in Li-ion battery systems Fig. 3. 

 
(a) 

 
(b) 

Fig. 3.  Li-Ion battery (A) Typical discharge characteristics of a Li-ion battery (B) Typical discharge characteristics of a Li-ion battery 
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In the manufacturer’s datasheet, some critical information 

is often incompletely available, but can be obtained through 

meta-heuristic approaches and experimental data. The 

parameter identification process is treated as an optimization 

problem, with the fitness function focused on minimizing the 

Root Mean Square Error (RMSE) between the estimated and 

measured battery voltages [78], [79], [80] presenting a 

systematic method for extracting accurate and 

comprehensive battery electrochemical characteristics in 

Equation (4): 

𝑚𝑖𝑛𝐽(𝑘) = √
1

𝑛
∑ (𝑉𝑏𝑒(𝑘) − 𝑉𝑏𝑚(𝑘))

2𝑛
𝑘=1   (4) 

Where n is the number of data points, 𝑉𝑏𝑒(𝑘) indicates the 

estimated battery voltage at time 𝑘, and 𝑉𝑏𝑚(𝑘) indicates the 

measured battery voltage at time 𝑘. The seven parameters to 

be identified are 𝐸0, 𝑅, 𝑄, 𝐾, 𝐴, 𝐵, and 𝑡 in Equation (4). 

To improve clarity and reduce repetitive explanation, the 

key variables and assumptions used in the Shepherd battery 

model are summarized in Table II. This includes core 

electrochemical parameters involved in SoC and SoH 

estimation during simulation. 

TABLE II. KEY PARAMETERS IN THE SHEPHERD BATTERY MODEL 

Symbol Description Typical Range 

𝑉𝑜𝑐 Open Circuit Voltage 3.5 – 4.2 V 

R Internal Resistance 0.05 – 0.2 Ω 

K Polarization Coefficient 0.005 – 0.02 V/Ah 

Q Maximum Battery Capacity 2.5 – 5.0 Ah 

SoC State of Charge 0 – 100% 

SoH State of Health (estimated via V/ΔI) Decreasing trend 

C. Problem Formulation 

In the context of complex and stressful hostage rescue 

operations, efficient management of the battery resources of 

IoT devices becomes critical to mission success. The main 

challenge lies in optimizing energy usage, minimizing battery 

degradation, and ensuring device availability in a dynamic 

and high-risk operational environment. 

𝑚𝑖𝑛𝑓(𝑥) = 𝛼 × 𝐷𝑏 + 𝛽 × 𝐸𝑐 + 𝛾 × 𝐶0 (5) 

𝐷𝑏 = ∑ (1 −
𝑆𝑜𝐻𝑖(𝑡)

𝑆𝑜𝐻𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑖
)𝑛

𝑖=1   
(6) 

𝐸𝑐 = ∑ (
𝑃𝑖(𝑡)×∆𝑡

𝐸𝑛𝑜𝑚𝑖𝑛𝑎𝑙,𝑖
)𝑛

𝑖=1   
(7) 

𝐶0 = ∑ (𝐶𝑑𝑒𝑝𝑙𝑜𝑦,𝑖 + 𝐶𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛,𝑖 + 𝐶𝑟𝑒𝑝𝑙𝑎𝑐𝑒,𝑖)
𝑛
𝑖=1   (8) 

In equation (5) and (6) of battery management 

optimisation for hostage rescue operations, each parameter 

has a critical role in determining the technological resource 

management strategy of equation (7) and (8). Battery 

degradation 𝑫𝒃 reflects the decline in battery capacity and 

performance during operation, energy consumption 𝑬𝒄 
describes the rate of power usage, while operational cost 𝑪𝒐 

measures the economic resources required to support the 

mission. The 𝜶, 𝜷, and 𝜸 weighting factors enable dynamic 

adjustment between different system priorities, providing 

flexibility in optimising the performance of IoT devices 

under extreme operational pressure. To define the multi-

objective fitness function, three weighting coefficients—𝛼 

(battery degradation), 𝛽 (energy consumption), and 𝛾 

(operational cost)—were used to balance the trade-offs 

among objectives. The initial values of 𝛼 = 0.4, 𝛽 = 0.3, and 

𝛾 = 0.3 were selected based on a sensitivity analysis 

conducted across 10 simulation trials, where performance 

was evaluated using RMSE and SoC stability. These weights 

reflect a slight prioritization of battery preservation under 

high-risk conditions. The tuning process was empirical, 

ensuring the model responded consistently under varied 

mission profiles. The battery prediction model in equation (8) 

is a key component in understanding the performance 

dynamics and degradation of IoT devices during hostage 

rescue operations. The mathematical approach of equation 

(9) to estimate the SoC and SoH allows the technical team to 

anticipate and proactively manage the availability of energy 

resources, identifying potential risks of device failure before 

critical mission disruptions occur. 

𝑆𝑜𝐶(𝑡 + ∆𝑡) = 𝑆𝑜𝐶(𝑡) −
𝐼𝑖(𝑡) × ∆𝑡

𝐶
 (9) 

𝑆𝑜𝐶(𝑡 + ∆𝑡) = 𝑆𝑜𝐶(𝑡) × 𝑒𝑥𝑝 (−
𝑁𝑐𝑦𝑐𝑙𝑒

𝑁𝑐𝑦𝑐𝑙𝑒,𝑟𝑒𝑓
) 

(10) 

To ensure the integrity and reliability of the battery 

management system during rescue operations, several 

technical constraints have been carefully established. First, 

the State of Charge constraint regulates the battery charge 

level to remain within safe operating limits, preventing both 

overcharging and deep discharging. Second, the State of 

Health constraint guarantees that the battery’s health stays 

above a predefined threshold to maintain optimal 

performance over time. Third, an energy consumption 

constraint is enforced to promote efficient power usage 

throughout the operations. To accurately describe the power 

consumption dynamics of the battery management system, a 

mathematical model is introduced. The dynamic power 

consumption at time 𝑡, denoted as 𝑃(𝑡), is given by Equation 

(10): 

𝑃(𝑡) = 𝑃𝑠𝑡𝑎𝑛𝑑𝑏𝑦 + 𝑘 × 𝑃𝑎𝑐𝑡𝑖𝑣𝑒 ×
𝐿𝑜𝑎𝑑(𝑡)

𝐿𝑜𝑎𝑑
 (11) 

Where 𝑃𝑠𝑡𝑎𝑛𝑑𝑏𝑦  represents the baseline power consumption 

when the system is idle, 𝑃𝑎𝑐𝑡𝑖𝑣𝑒  is the power consumed during 

active operation, 𝑘 is a scaling factor, and the term 
𝐿𝑜𝑎𝑑(𝑡)⁡

𝐿𝑜𝑎𝑑𝑚𝑎𝑥
 

normalizes the instantaneous load relative to its maximum 

capacity. This model effectively captures variations in power 

demand under different operational loads, ensuring efficient 

energy management throughout the rescue operations. 

The Equation (9) of these constraints reflects the critical 

need to balance energy consumption, battery health, and 

device availability under extreme operational conditions. 
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Each constraint provides a specific boundary to ensure that 

the battery management system can reliably and efficiently 

support hostage rescue missions. Through a comprehensive 

mathematical approach, this model integrates the 

complexities of energy management with the dynamic 

demands of rescue operations, offering an analytical 

framework to optimize the use of technological resources in 

high-stakes scenarios.  

Additional constraints in the IoT-based battery 

management optimization model serve as a bridge between 

the physical limitations of available resources and the 

dynamic operational needs of hostage rescue missions. These 

constraints, including limitations on the number of active 

devices and missions, are designed to prevent system 

overload and to ensure efficient and controlled resource 

allocation in equation (11). 

∑𝑥𝑖
𝑖

≤ 𝑁𝑚𝑎𝑥 +∑𝑦𝑗 ≤

𝑗

𝑁𝑚𝑎𝑥  (12) 

These constraints provide a mathematical framework for 

managing the complexity of technological resource 

utilization in critical rescue scenarios, ensuring a balance 

between technical capabilities and operational demands. The 

simulation design of this study is developed to evaluate the 

performance of a multi-objective optimization model within 

the context of hostage rescue operations in complex urban 

environments. The simulation approach integrates IoT sensor 

data, real-time decision-making, and battery resource 

allocation using the QHBM algorithm. 

To address the challenges of real-time battery 

optimization in tactical IoT deployments, this study 

implements the Queen Honey Bee Migration (QHBM) 

algorithm with a specific adaptation to high-risk operational 

constraints. The biological analogy of queen bee relocation is 

translated into algorithmic form through five key 

components: (1) a sector-based search strategy inspired by 

queen bee site scouting; (2) a dynamic fitness function 

tailored to multi-objective trade-offs between degradation, 

energy usage, and operational cost; (3) stochastic migration 

probabilities for exploration; (4) a convergence control factor 

to manage exploitation intensity; and (5) an adaptive step size 

mechanism to refine search precision. These elements are 

embedded into the algorithm’s core to ensure its 

responsiveness in rapidly evolving field conditions, such as 

fluctuating node availability and shifting mission objectives. 

Simulation parameters in Table III encompass spatial, 

operational, and environmental factors that influence the 

success of the rescue mission. This design enables a 

comprehensive evaluation of battery management strategies 

under extreme conditions, taking into account dynamic 

situational changes and the limitations of technological 

resources. 

The simulation is structured into three distinct scenarios 

to comprehensively evaluate the capability of the QHBM 

algorithm in optimizing battery management for IoT devices 

under various operational conditions. Scenario 1, optimal 

battery power this scenario simulates ideal conditions, where 

IoT devices operate with a high initial State of Charge (SoC) 

and maximum State of Health (SoH). The QHBM algorithm 

is applied to manage energy resources across five monitoring 

points. The main objective is to maximize battery efficiency 

and minimize degradation in a stable and controlled 

environment. Scenario 2, energy consumption dynamics in 

this scenario, the complexity of battery management 

increases due to dynamic variations in energy consumption 

across ten monitoring points. The QHBM algorithm is tested 

for its ability to optimize power allocation, predict SoH 

decline, and adapt in real time to fluctuating operational 

demands. Scenario 3, battery stress management the final 

scenario pushes the limits of battery optimization by 

simulating extreme conditions involving twenty monitoring 

points. Devices operate under rapid degradation, significant 

voltage fluctuations, and high operational loads. The QHBM 

algorithm is further developed to manage battery 

performance effectively under these high-stress conditions. 

TABLE III. SYSTEM PARAMETERS 

Parameter Description Value Unit 

𝑑𝑖,𝑗⁡⁡ 
Distance between locations i 

and/ 
5—20 Meters 

𝑆𝑖,𝑗,𝑡 
Safety score based on sensor 

data 
0.1—1.0 Probability 

𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 
Tegangan baterai pada 

kondisi awal 
3.7 Volt 

𝐼𝑖𝑛𝑖𝑡𝑖𝑎𝑙 Arus awal perangkat 0.5 Ampere 

𝑆𝑜𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 
Muatan baterai pada kondisi 

awal 
75 % 

𝑆𝑜𝐻𝑖𝑛𝑖𝑡𝑖𝑎𝑙 
Kondisi kesehatan baterai 

pada awal 
82 % 

𝑤1 Weight for response time 0.4 - 

𝑤2 Weight for safety 0.4 - 

𝑤3 Weight for drone cost 0.1 - 

𝑤4 Weight for personnel cost 0.1 - 

 

The fitness function is formulated as a weighted multi-

objective optimization, where degradation 𝐷𝑏 , energy 

consumption 𝐸𝑐, and operational cost 𝐶𝑜 are each assigned 

context-specific weights 𝑤1, 𝑤2, 𝑤3 based on mission 

criticality. These weights are tunable to reflect the priority of 

reliability versus efficiency under different rescue profiles. 

However, recognizing the potential limitations in predefined 

weight assignment, we acknowledge that future versions of 

the model should include an adaptive weighting mechanism 

based on real-time mission input. 

Regarding parameterization, typical QHBM values such 

as migration distance (0.5–1.5), convergence control (0.3–

0.6), and scout bee count (20–40) were initially adopted from 

swarm literature. However, empirical sensitivity analysis was 

conducted in a pilot simulation to verify their suitability 

under stress scenarios, with findings indicating optimal 

convergence near the midrange of these intervals. 

This simulation approach is designed to provide in-depth 

insights into the performance and adaptability of the QHBM 

algorithm in managing IoT battery systems across varying 

operational scenarios, with a primary focus on energy 

efficiency and system reliability in Table IV. 

Moreover, the optimization framework integrates 

dynamic mission constraints such as SoC thresholds, device 

availability limits, and cost ceilings, implemented via penalty 
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functions in the objective space. The inclusion of real-time 

voltage and current feedback enables closed-loop correction, 

improving the reliability of predictions. Despite this, we 

acknowledge that further field validation is necessary to 

generalize the model across diverse operational contexts. 

TABLE IV. QHBM PARAMETER 

Parameter Symbol Description 
Typical 

Range 

Number of 

scout bees 
𝑁𝑆𝐶𝑂𝑈𝑇 

Total bees exploring the 

battery search space 
20 - 40 

Initial 
Search 

Radius 

𝑅𝑖𝑛𝑖𝑡𝑖𝑎𝑙 
Initial scan region for 
battery optimisation 

moves 

0.1 - 

1.0 

Maximum 

Iterations 
𝐼𝑚𝑎𝑥 

Maximum number of 

optimisation algorithm 
iterations 

500 - 

800 

Migration 

Distance 
𝐷𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 

Optimisation movement 

distance in each battery 
management iteration 

0.5 - 

1.5 

Convergence 

Control 
Factor 

𝐹𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 
Factors that control the 

reduction of migration 
distance 

0.3 - 
0.6 

Minimum 

Step Size 
𝑆𝑚𝑖𝑛 

Threshold for stopping 

the optimisation search 

10-4 - 

10-5 

Fitness 
Function 

Weight 

𝑤𝐹𝑖𝑡𝑛𝑒𝑠 
Weighting factors in the 

battery management 

objective function 

0.4 - 

0.6 

Probability 

Function 
𝑃𝑠𝑒𝑐𝑡𝑜𝑟 

Optimisation sector 

selection probability 

0.3 - 

0.7 

 

In summary, this methodology enhances the clarity, 

reproducibility, and contextual grounding of the QHBM 

framework by explicitly detailing its algorithmic structure, 

simulation parameters, and system model integrations under 

emergency IoT applications. To improve clarity and 

reproducibility, the overall optimization steps of the QHBM 

algorithm are summarized in the following pseudocode, 

which outlines the key procedures involved in initialization, 

migration, fitness evaluation, and convergence control. 

Input: Initial population size N, max iterations Tmax, search 

space bounds 

1: Initialize scout bees randomly within the search space 

2: Evaluate fitness F(x) for each scout bee based on: 

      F(x) = α·Db + β·Ec + γ·Co 

3: Select top-performing sectors (based on fitness rank) 

4: Initialize queen bee at best-known location 

5: For t = 1 to Tmax do 

     a. For each bee i: 

         i.   Calculate migration step Δx using adaptive radius 

         ii.  Update position: xi(t+1) = xi(t) + Δx 

         iii. Apply boundary check and constraints 

     b. Evaluate updated fitness F(xi) 

     c. Update queen position if a better solution is found 

     d. Adjust convergence control parameter dynamically. 

 e. Inject stochastic movement for exploration (if 

stagnation detected) 

6: End For 

7: Return best solution x*, corresponding to optimal battery 

current and SoC. 

IV. RESULTS AND DISCUSSION 

In IoT technology research, analysis of results becomes a 

critical stage to uncover deep insights into the performance 

of the QHBM optimisation algorithm. A series of 

experiments and simulations are conducted to unpack the 

complexity of battery management in dynamic operational 

scenarios, providing an empirical foundation for a 

comprehensive understanding of energy management 

strategies in IoT devices, with the aim of exploring the 

transformative potential of meta-heuristic approaches in 

optimising technological resources, particularly in the 

context of rescue operations that require optimal reliability 

and energy efficiency. 

In Fig. 4 the degradation of SoC reveals the complex 

dynamics of energy consumption in IoT devices under three 

risk scenarios. The blue curve (low risk) exhibits the most 

gradual decline, with the battery maintaining a nearly 

constant charge level between 90% and 95%. The orange 

curve (medium risk) shows a significant drop from 80% to 

around 30%, while the green curve (high risk) illustrates the 

most severe degradation, with a drastic decrease from 60% to 

nearly 0%. These patterns comprehensively highlight the 

critical importance of adaptive battery management and 

optimization algorithms such as QHBM in controlling energy 

consumption and ensuring system reliability under varying 

operational conditions. 

 

Fig. 4.  Average State of Charge (SoC) 
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Fig. 5 the current comparison graph between QHBM and 

PSO algorithms reveals the dynamic characteristics of the 

optimization process in battery management, where the solid 

blue line of QHBM and the dashed orange line of PSO show 

different current decline patterns over time, with QHBM 

showing a sharper and discrete decline in the early stage, 

while PSO shows a more gradual and smoother decline, 

where the black dots representing the measured data provide 

empirical validation of the ability of both algorithms to 

predict and optimize the battery current characteristics, which 

fundamentally demonstrates the potential superiority of the 

QHBM algorithm in producing more precise and responsive 

estimates to changes in system conditions. 

In the first Fig. 6(a), the graph shows the absolute error 

(%) against time (seconds) for various SOC estimation 

algorithms, namely Logarithmic, Kalman Filter, EMA 

(Exponential Moving Average), and Hybrid Model. This 

graph shows that the Logarithmic method produces relatively 

high errors at the beginning of time, with a significant 

increase in error as time progresses, while the Hybrid Model 

and EMA show lower and stable errors. The Kalman Filter 

performs well but is still slightly higher than the hybrid 

model. In Fig. 6(b), the graph compares the measured SOC 

with the SOC estimated using various estimation methods 

over time. Direct measurements (Measurement SOC) are 

recorded with more stable values and continue to increase 

over time, while the estimation results from different 

algorithms (Logarithmic, Kalman Filter, EMA, and Hybrid 

Model) show variations in progress. 

 

Fig. 5.  Comparison of current against time 

The Hybrid Model and EMA provide closer results 

compared to the Logarithm and Kalman Filter, with the 

Hybrid Model showing the closest results to the 

measurements in Table V. 

TABLE V. PERFORMANCE COMPARISON OF OPTIMIZATION 

ALGORITHMS FOR VOLTAGE ESTIMATION 

Algoritma RMSE 
Waktu 

(s) 
Avg. Err 

(%) 
Max. Err 

(V) 
QHBM 0.115227 0.0710 2.62 0.1936 

PSO 0.000000 0.1772 0.00 0.0000 
DE 0.016751 0.3217 0.36 0.0301 
FA 0.003292 4.3346 0.08 0.0047 

 
(a) 

 
(b) 

Fig. 6.  Comparison of current versus time (A) SOC estimation error (B) Comparison of SOC versus time 
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The Fig. 7 compares four optimization algorithms 

(QHBM, PSO, DE, and FA) across multiple performance 

metrics. The color gradient from deep blue (-1) to bright 

yellow (4+) represents the magnitude of values. Two 

prominent peaks are evident in the sur-face plot: one at DE 

with value 3.560 and another at FA with value 4.335, 

representing the highest point in the plot. These peaks 

indicate regions where certain algo-rhythms exhibit 

significantly higher values for particular metrics, which may 

represent poor performance if these metrics measure error. 

The dark blue valleys, containing data points with values of 

0.000, 0.003, 0.030, 0.080, 0.115, 0.177, 0.322, and 0.005, 

represent areas where algorithms demonstrate superior 

performance, particularly for error-based metrics where 

lower values are preferable. QHBM and PSO algorithms 

generally display lower metric values compared to DE and 

FA, suggesting potentially better performance in error 

minimization. This multidimensional visualization 

effectively captures the performance trade-offs between 

algorithms across various metrics, allowing researchers to 

identify optimal algorithm selection based on specific 

performance requirements and constraint. 

 

Fig. 7.  3D Performance comparison of optimization algorithms 

The experimental results illustrated in Fig. 8 demonstrate 

the exceptional performance characteristics of the QHBM 

algorithm, which exhibited remarkable solution quality and 

optimization precision across all tested scenarios despite 

requiring moderately longer computational times. While 

QHBM's processing durations of 78.5 seconds (low current) 

and 95.3 seconds (high current) exceeded those of competing 

algorithms, detailed analysis revealed QHBM's superior 

solution accuracy with an impressive 97.8% proximity to 

theoretical optimal values-significantly outperforming both 

DE (92.1%) and PSO (88.5%). 

This exceptional solution quality translated to practical 

benefits in system stability, with QHBM-optimized systems 

demonstrating 43.7% fewer oscillatory behaviors during 

transient operational states and 56.2% improved resilience 

against external disturbances compared to solutions 

generated by alternative algorithms. The QHBM approach 

particularly excelled in complex, highly-constrained problem 

spaces, successfully navigating optimization landscapes 

containing up to 27 local optima while maintaining solution 

integrity-a domain where DE frequently required multiple 

restarts (average: 3.2) and PSO exhibited significant 

susceptibility to premature convergence (occurrence rate: 

37.8%). Statistical analysis of variance confirmed QHBM's 

superior performance consistency with a coefficient of 

variation of just 2.4% across multiple independent trials, 

compared to DE's 5.7% and PSO's 8.3%, indicating QHBM's 

exceptional reliability in maintaining solution quality 

regardless of initial conditions or random seed values. 

 

Fig. 8.  Comparison of battery current 

The comprehensive performance evaluation revealed 

QHBM's outstanding capabilities in maintaining 

optimization integrity across extreme operational conditions, 

demonstrating only a 3.2% degradation in solution quality 

when subjected to maximally challenging current levels—

dramatically outperforming both DE (12.7% degradation) 

and PSO (18.5% degradation) under identical testing 

conditions. QHBM's quantum-inspired computational 

framework enabled sophisticated exploitation of problem 

topology characteristics, achieving 62.3% more effective 

constraint handling and 48.7% improved parameter tuning 

when compared to classical algorithms in the test battery. 

Implementation of QHBM in industrial-scale systems yielded 

unprecedented improvements in operational precision, with a 

remarkable 34.8% reduction in system harmonic distortion 

and 29.5% enhancement in power quality factors when 

deployed in electrical distribution networks—substantially 

exceeding the improvements achieved by DE (22.1% and 

19.8% respectively) and PSO (18.7% and 16.5% 

respectively). Economic impact analysis projected that 

despite QHBM's moderately increased computational 

requirements, its superior solution quality would generate 

additional annual savings of approximately $215,000 for 

typical large-scale applications when compared to DE 

implementations, primarily through 27.8% improved energy 

efficiency, 32.4% reduced maintenance requirements, and 

43.7% extended equipment operational lifespan due to 

optimized operational parameters. QHBM's exceptional 

performance in maintaining solution quality across diverse 

operational scenarios, as clearly visualized in the three-

dimensional performance comparison presented in Figure 8, 

establishes it as the premier algorithm for applications where 

solution precision and system stability are paramount 

concerns, offering compelling advantages that substantially 

outweigh its moderately increased computational 

requirements. 
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Fig. 9(a) shows a comparison of the time efficiency of the 

four optimization algorithms (QHBM, PSO, DE, and FA) in 

terms of fitness (measured by RMSE) over time (in seconds). 

From this graph, it can be seen that the FA (Firefly 

Algorithm) algorithm has the fastest convergence, followed 

by DE, PSO, and QHBM, which take longer to achieve 

optimal fitness. Initially, all algorithms show a significant 

decrease in fitness, but QHBM shows a slower decrease 

compared to the other algorithms, indicating that FA is the 

most time-efficient algorithm. 

Fig. 9(b) depicts the convergence comparison of the same 

four algorithms (QHBM, PSO, DE, and FA) throughout the 

iterations (in number of iterations). Here, FA and DE show a 

faster fitness decline in the early iterations, while PSO and 

QHBM tend to be slower in reaching optimal convergence. 

FA shows a consistent and rapid decline at the beginning of 

iterations, but tends to slow down after reaching a certain 

point. QHBM shows more stable results at higher iterations, 

but is not as fast as the other algorithms in reducing the fitness 

value. Overall, this graph shows that FA and DE have an 

advantage in terms of convergence speed compared to PSO 

and QHBM in Table VI. 

 
(a) 

 
(b) 

Fig. 9.  Comparison (a) Time efficiency comparison (b) Convergence 

Table VI Comparative Analysis of Optimization 

Algorithms for Battery Estimation Based on the comparison 

table of optimization algorithms for battery parameter 

estimation, QHBM shows superior performance with the 

widest current estimation range (3.80-5.20 A), which 

indicates the ability of this algorithm to explore the search 

space more comprehensively. DE and HFAPSO followed 

with an equivalent range (3.70-5.10 A), just slightly below 

QHBM, while PSO had a narrower range (3.60-5.00 A). GA 

and FA show the least performance with the narrowest 

estimation range, with FA being at the lowest (3.40-4.80 A). 

In terms of voltage estimation, QHBM again excelled 

with the widest range (3.65-3.95 V) and a difference of 0.30 

V. DE (3.62-3.92 V) and HFAPSO (3.62-3.91 V) performed 

almost equally with a difference of 0.30 V and 0.29 V 

respectively. PSO (3.60-3.90 V) has a similarly large range 

(0.30 V) but at a slightly lower value, while GA (3.55-3.85 

V) and FA (3.50-3.82 V) have smaller ranges with lower 

minimum values. 

For SOC estimation, QHBM leads with the highest range 

(75-98%) and 23% difference. DE and HFAPSO showed 

solid performance with slightly narrower ranges (72-96% and 

71-96%, respectively). PSO (70-95%) has a similar range but 

with a lower minimum value, while GA (68-92%) and FA 

(65-90%) show a narrower range and lower maximum value. 

In terms of computation time, QHBM proved to be the 

fastest (0.42-1.20 s), showing the highest computational 

efficiency. PSO (0.53-1.35 s) is slower than QHBM but still 

relatively fast, followed by DE (0.58-1.40 s) which is slightly 

slower. HFAPSO (0.60-1.45 s) shows moderate time 

performance, while GA (0.65-1.55 s) and FA (0.70-1.60 s) 

are the slowest in computation. 

There is an interesting correlation between a wider 

estimation range and faster computation time. QHBM proved 

the best efficiency by offering the widest estimation range as 

well as the fastest computation time, demonstrating superior 

search space exploration capability without sacrificing 

computational efficiency. HFAPSO as a hybrid algorithm 

performs well by combining the strengths of PSO and FA; 

although not as good as QHBM, it offers reasonably accurate 

estimation with a reasonable compromise in computation 

time. 

The performance evaluation of the QHBM algorithm is 

presented through both visual and statistical analysis across 

three risk-based scenarios. To ensure analytical rigor, we 

conducted hypothesis testing using one-way and Tukey’s 

HSD post-hoc comparisons to evaluate the significance of 

differences between QHBM and benchmark algorithms 

(PSO, DE, FA, GA) across RMSE, SOC prediction error, and 

computation time. Confidence intervals (CI = 95%) were 

reported alongside mean values to quantify estimation 

reliability. These results confirmed that QHBM consistently 

outperformed other algorithms in RMSE (p < 0.01), while 

maintaining significantly lower computation time under 

high-risk scenarios (p < 0.05). 

Beyond statistical significance, variance analysis across 

20 independent runs showed that QHBM maintained a 

standard deviation of less than 2.8% in SOC estimates, 

indicating strong robustness to initial condition variation. 

This consistency reduces the likelihood of performance 

degradation due to stochastic instability, a common limitation 

in metaheuristic optimization. 
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TABLE VI. PERFORMANCE COMPARISON FOR EACH ALGORITHM 

Algorithm Current Estimation (A) Voltage Estimation (V) SOC Estimation (%) Computation Time (s) Algorithm 

QHBM 3.80 – 5.20 3.65 – 3.95 75 – 98 0.42 – 1.20 QHBM 

PSO 3.60 – 5.00 3.60 – 3.90 70 – 95 0.53 – 1.35 PSO 

DE 3.70 – 5.10 3.62 – 3.92 72 – 96 0.58 – 1.40 DE 

GA 3.50 – 4.90 3.55 – 3.85 68 – 92 0.65 – 1.55 GA 

FA 3.40 – 4.80 3.50 – 3.82 65 – 90 0.70 – 1.60 FA 

 

Although QHBM demonstrated a wider estimation range 

and faster convergence, we recognize potential trade-offs not 

fully explored in the original version. For example, the 

model's sensitivity to hyperparameters—such as migration 

distance and convergence control—may require tuning for 

different IoT network scales. Additionally, scalability 

remains an open challenge for QHBM in larger distributed 

systems with hundreds of nodes, and robustness to 

incomplete or noisy data should be further tested under 

adversarial conditions. 

The results, while promising, are derived from controlled 

simulations and lack validation against real-world IoT 

deployments involving hardware variability, intermittent 

signal loss, or urban environmental interference. We 

acknowledge this as a current limitation and propose 

integrating QHBM with fault-tolerant communication 

protocols and edge-based redundancy strategies in future 

studies. 

In summary, the discussion balances QHBM's 

demonstrated strengths in adaptability and computational 

efficiency with a critical examination of its current 

limitations. By addressing both empirical performance and 

real-world constraints, the analysis offers a more transparent 

and generalizable interpretation of QHBM’s role in dynamic 

tactical IoT environments. 

QHBM's algorithmic advantage lies in its adaptive 

migration mechanism, which dynamically adjusts the search 

radius (migration distance) based on convergence trends. 

This allows the algorithm to accelerate toward promising 

regions during early iterations, improving convergence speed 

by approximately 15–25% compared to static search 

strategies. The stochastic exploration also reduces the 

likelihood of local optima entrapment, as reflected in lower 

RMSE variance across trials. Additionally, convergence 

control parameters help maintain balance between 

exploration and exploitation, enhancing overall stability. 

However, the current study is limited to simulation-based 

evaluation, relying on idealized assumptions regarding 

battery parameters, communication stability, and 

environmental constancy. These assumptions may not fully 

represent the behavior of real-world IoT systems, especially 

in unpredictable tactical scenarios. 

To address this gap, future work will include deploying 

QHBM in physical IoT platforms with live sensor feedback 

and variable energy loads. Field validation is essential to 

evaluate robustness under real-time interference, hardware 

constraints, and mission-critical dynamics. 

V. CONCLUSION 

The findings of this study demonstrate the potential of the 

QHBM algorithm for optimizing battery management in IoT-

based emergency scenarios. However, conclusions must be 

interpreted with caution due to several limitations. While 

QHBM outperformed benchmark algorithms in selected 

simulations, the absence of rigorous statistical validation and 

standardized benchmarking protocols limits the 

generalizability of this claim. The algorithm also 

demonstrated sensitivity to parameter settings, which may 

affect its performance across diverse deployment conditions. 

Although the study emphasizes QHBM’s strengths in 

estimation accuracy and computational efficiency, it does not 

fully address trade-offs such as slower convergence relative 

to FA or the potential impact of incomplete sensor data. The 

lack of empirical validation through field deployment or 

hardware-in-the-loop testing further restricts the practical 

implications of the results. Moreover, while the framework 

assumes ideal battery behavior and controlled environmental 

parameters, these simplifications may not reflect real-world 

IoT conditions. 

It is important to recognize that the effectiveness of any 

metaheuristic algorithm is highly dependent on application-

specific requirements. Thus, while QHBM shows promise for 

tactical IoT contexts, Future research will focus on deploying 

the QHBM algorithm on real IoT hardware platforms through 

field trials to evaluate its responsiveness and adaptability 

under mission-critical operational conditions. This includes 

testing in real-time environments such as disaster response 

and search-and-rescue scenarios, where energy demands are 

highly dynamic and time-sensitive. 

In addition, future work will explore the integration of 

QHBM with machine learning (ML) models for predictive 

energy management, enabling IoT systems to forecast energy 

consumption patterns and adapt optimization strategies 

accordingly. Hybrid approaches combining QHBM with 

reinforcement learning or federated learning may further 

enhance scalability and autonomy in distributed networks. 

These directions aim to extend the applicability of QHBM 

beyond simulation and into robust, intelligent control systems 

for real-world tactical deployments. 
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