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Abstract—Occupational heat stress is a growing threat to the 

health and productivity of workers exposed to extreme 

environmental conditions. This issue is particularly acute in 

sectors such as construction, mining, agriculture, and heavy 

industry, where high heat exposure and physical workload are 

constant. This systematic review analyzes 96 scientific articles 

published in recent years, aiming to identify emerging 

technological systems focused on the prediction, monitoring, 

and mitigation of occupational heat stress. The main 

contribution of this study lies in the cross-sectoral categorization 

of recent solutions, providing a comparative framework that 

highlights knowledge gaps, methodological limitations, and 

opportunities for innovation. Following PRISMA guidelines, 

data were extracted on sensor type, predictive models, 

validation environments, and the sector of application. 

Technologies were classified into five main categories: wearable 

sensors, IoT-based monitoring platforms, hybrid thermal 

indices, predictive models based on environmental and 

physiological inputs, and decision-support tools. The results 

reveal a strong presence of wearable systems. Adoption is 

further constrained by socio-technical barriers such as worker 

compliance, PPE burden, costs, data privacy, and 

interoperability gaps. However, only a small fraction of studies 

conducted in-field validation under real thermal stress 

conditions, and even fewer included longitudinal ergonomic 

trials, limiting generalizability, with additional concerns about 

heterogeneous outcome measures and inconsistent definitions of 

heat stress across studies. A sectoral imbalance is also observed, 

with construction and industrial environments receiving more 

research attention than mining, agriculture, and indoor 

workplaces. In conclusion, we propose a practical roadmap for 

the adoption of standardized data schemas and protocols, field 

trials across complete work cycles, privacy-preserving analytics 

(federated learning), and integration of ergonomic and 

organizational controls. In highly humid or high-radiation 

settings, complementing or replacing WBGT with hybrid 

indices (UTCI) can improve risk estimation and enable more 

actionable work-rest and hydration alerts. 

Keywords—Occupational Heat Stress; Occupational Health; 

Thermal Comfort; Workplace Safety; Wearable Sensors; IoT. 

I. INTRODUCTION 

Prolonged exposure to extreme thermal conditions poses 

an increasing risk to the health, safety, and productivity of 

workers in critical sectors, including construction, 

agriculture, mining, manufacturing, and heavy industry [1]-

[10]. Heat stress, defined as the physiological imbalance in 

which the human body cannot adequately dissipate 

accumulated heat, can lead to discomfort and cognitive 

impairment, and in severe cases, dehydration, kidney 

damage, heatstroke, or even death [11], [12]. Despite several 

narrative and scoping overviews, prior reviews have not 

offered a sector-based, quantified synthesis that explicitly 

links technology classes, validation contexts, and adoption 

barriers across diverse occupational settings. 

Climate change has intensified the frequency and severity 

of extreme heat events, thereby increasing worker exposure 

to hot environments in both outdoor settings and industrial 

areas with limited ventilation [13]-[20]. This risk is further 

exacerbated by the mandatory use of personal protective 

equipment (PPE) in sectors such as mining, construction, and 

healthcare, which significantly increases the body’s thermal 

load [21]-[25]. Beyond biophysical exposure, socio-technical 

and ergonomic determinants, including user compliance, 

workplace policies, cultural attitudes toward safety, and cost 

constraints in low-resource settings, critically shape real-

world adoption and sustained use of technological systems. 

To address this issue, technological solutions based on 

intelligent systems have been developed to prevent the 

adverse effects of occupational heat stress. These include 

wearable devices for physiological monitoring, sensor 

networks interconnected through Internet of Things (IoT) 

technologies, and predictive models powered by artificial 

intelligence (AI) and machine learning. Such tools enable the 

real-time analysis of environmental and biological variables, 

such as temperature, humidity, solar radiation, heart rate, and 

sweat rate, supporting both the early detection of hazardous 

conditions and the prediction of heat-related events [26]-[40], 

[41]-[45]. However, key questions remain regarding 

scalability across work processes, interoperability of sensors, 

data formats, and protocols, and the operational sustainability 

of these systems over complete work cycles in heterogeneous 

environments. 

However, the existing literature remains considerably 

fragmented. Many studies focus on specific sectors, 

technologies, or algorithms, without providing a 

straightforward integration between monitored variables, 

real-world implementation environments, and experimental 
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validation [46], [47]. Given these constraints, a sector-based 

analysis is warranted to compare environmental and 

physiological demands, regulatory and ergonomic 

constraints, and the feasibility of cross-sector technology 

transfer (e.g., adapting mining ventilation strategies to 

underground construction) [48], [49]. 

In light of this landscape, the present review aims to 

consolidate current knowledge on intelligent systems applied 

to the monitoring and prediction of heat stress in workers 

exposed to extreme environments. A total of 96 scientific 

articles were published, extracted from indexed academic 

databases, including Scopus, IEEE Xplore, PubMed, MDPI, 

and SpringerLink, following rigorous inclusion and exclusion 

criteria, as well as sectoral classification. The review mainly 

emphasizes studies from the last five years, supplemented by 

previous foundational work where strictly necessary, with 

details on the search window provided in the following 

sections. 

The main contribution of this study is to provide an 

integrated, comparative, and structured overview of existing 

technological applications, organized by technology type 

(sensors, IoT, predictive systems), sector of application, 

monitored physiological and environmental parameters, and 

algorithmic approaches. In addition, this review identifies 

relevant gaps in the literature, discusses current 

implementation challenges, and proposes future research 

directions to support the effective adoption of these systems 

in real-world occupational environments. Potential coverage 

and language limitations due to database selection and 

English-only inclusion are acknowledged. Building on this, 

the contribution consolidates a sector-based synthesis that 

explicitly links technology classes to validation contexts and 

adoption barriers, and derives a prioritized, actionable 

roadmap for deployment across underrepresented sectors. 

II. REVIEW METHODOLOGY 

This study employed a systematic review methodology, 

aligned with the PRISMA guidelines, to identify and 

synthesize the scientific literature on intelligent technologies 

for predicting heat stress in workers exposed to extreme 

environmental conditions. The search was conducted across 

five multidisciplinary databases: Scopus, IEEE Xplore, 

PubMed, SpringerLink, and MDPI, which were selected for 

their relevance to engineering, occupational health, and 

emerging technologies.  

Only peer-reviewed original research articles published in 

English were included. Eligible studies focused on the 

application of technological tools for monitoring, assessing, 

or predicting heat stress in working populations under real or 

simulated conditions. Search strategies were constructed 

using Boolean operators and structured keywords centered on 

three core concepts: heat stress, occupational exposure, and 

intelligent technologies. Table I presents the detailed search 

equations used in each database. 

The literature selection process followed four phases: 

identification, screening, eligibility assessment, and final 

inclusion. From the initial search, 378 potentially relevant 

publications were retrieved. After data normalization and 

duplicate removal, an initial screening by title and abstract 

was conducted to verify thematic alignment with the review 

objectives. Subsequently, full-text articles were assessed 

using predefined inclusion and exclusion criteria related to 

the target population, application context, and technological 

approach. As a result, 96 articles were selected that strictly 

met the established standards. Screening and full-text 

assessment were performed independently using a pre-

piloted form; Discrepancies were resolved by discussion. 

Inter-rater agreement (Cohen's κ) was calculated for the 

selection of titles/abstracts and sectoral allocation, with a 

threshold of "substantial" agreement before data synthesis. 

TABLE I.  SEARCH EQUATIONS BY DATABASE 

Database Search Equation 

Scopus 

("heat stress" OR "thermal stress" OR "heat strain") 
AND ("workers" OR "occupational exposure") AND 

("prediction" OR "monitoring") AND ("intelligent 

system" OR "machine learning" OR "wearable") 

IEEE Xplore 
("heat stress" AND "workers") AND ("sensor" OR 

"AI" OR "prediction") 

PubMed 
("occupational heat stress" AND "wearable" AND 

"prediction") 

SpringerLink ("thermal stress prediction" AND "workers" AND 

"intelligent system") 

MDPI 
("heat strain" AND "monitoring" AND "workers" 

AND "IoT") 

 

Each included publication was reviewed to extract key 

information across five analytical dimensions: (1) the type of 

technology employed (e.g., wearable sensors, IoT platforms, 

or machine learning-based models), (2) the physiological or 

environmental parameters monitored (e.g., body temperature, 

heart rate, relative humidity, solar radiation, or WBGT 

index), (3) the nature of the predictive model implemented, 

(4) the sector of application (construction, mining, 

agriculture, manufacturing, or healthcare), and (5) the 

validation context (laboratory, simulation, field tests, or 

operational deployment). To accommodate heterogeneous 

outcome measures, a priori "validation categories" were 

defined as: laboratory only; simulated/pilot; field-based 

under operating conditions; and longitudinal field. Studies 

were assigned to these categories to support similar 

comparisons rather than pooled metrics. 

The extracted data were organized into an analytical 

matrix, enabling a cross-sectional comparative analysis by 

technology type and economic sector. Due to the expected 

heterogeneity in the results, devices, and protocols, we did 

not attempt a quantitative meta-analysis; Instead, a structured 

comparative synthesis was performed, and 

overgeneralization across sectors was avoided when 

reporting context-specific findings. The emphasis on time 

favored studies of the last five years to capture current 

technological maturity, while previous foundational works 

were maintained when necessary for the methodological 

context; the implications of English inclusion and database 

coverage are acknowledged in the Limitations. 

III. CRITICAL SECTORS AFFECTED BY HEAT STRESS 

To enable a systematic and contextualized analysis of 

technological applications for predicting and mitigating 

occupational heat stress, the 96 articles selected for this 

review were categorized by their predominant sector of 

application. Each study was assigned to a single sector to 
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ensure representativeness and avoid overlap in interpretation. 

The defined sectors include industry, construction, mining, 

agriculture, indoor environments, outdoor occupations 

(unspecified open-air settings), and a final “Other / 

Unspecified” category. This last group includes studies with 

applications that are not linked to a specific productive 

context or are still in experimental or conceptual phases. 

Sector definitions and inclusion rules were pre-piloted and 

applied using a structured coding form; when studies spanned 

multiple contexts, the dominant implementation or validation 

setting determined assignment. 

Sector assignments were determined through a full-text 

review and verification of the implementation or simulation 

context described in each study. Table II presents the absolute 

and relative distribution of articles across sectors. The largest 

share corresponds to the “Other / Unspecified” category 

(34.4%), reflecting the prevalence of cross-cutting or early-

stage technologies that have not yet been integrated into a 

specific economic activity. The most represented defined 

sectors are construction (16.7%), industrial environments 

(14.6%), and outdoor occupations (13.5%), which aligns with 

the high levels of thermal exposure and the critical need for 

adaptive technological solutions in these settings. 

Additionally, Fig. 1 offers a visual overview of the sectoral 

distribution, facilitating the identification of research trends 

and gaps across occupational domains. To improve 

transparency, independent dual coding and adjudication were 

used for sector allocation; inter-rater agreement (Cohen's κ) 

was calculated, and a "substantial" threshold was met before 

synthesis. The "Other/Unspecified" category adds cross-

sectional methods and lab prototypes; Therefore, sectoral 

percentages should be interpreted with caution in light of 

publication and indexing practices. 

TABLE II.  DISTRIBUTION OF REVIEWED STUDIES BY SECTOR 

Sector 

Parameters 

Number of 

Studies 
Percentage (%) 

Other / Unspecified 33 34.4% 

Industrial 14 14.6% 

Construction 16 16.7% 

Outdoor 13 13.5% 

Mining 9 9.4% 

Agriculture 6 6.3% 

Indoor Environments 5 5.2% 

 

 

Fig. 1. Percentage distribution of reviewed studies by productive sector 

A. Sector Industrial 

In the industrial sector, heat stress poses a significant 

threat to worker health and performance due to the 

convergence of adverse environmental conditions, the 

mandatory use of personal protective equipment (PPE), and 

sustained physical workload. In response, numerous 

technological solutions have been developed to monitor, 

predict, and mitigate occupational heat stress in industrial 

environments, with increasing emphasis on intelligent tools 

and non-invasive devices. 

One of the most frequently explored lines of research 

involves the use of wearable sensors for continuously 

collecting physiological and environmental variables. In [6], 

a portable device was introduced, equipped with heart rate 

sensors, a thermopile, an accelerometer, and relative 

humidity detection, designed to be worn under work clothing 

and capable of capturing vital data in real-time without 

interrupting worker activity. Fig. 2 (inspired by [6]) 

illustrates this solution, which stands out for its portability, 

low power consumption, and compatibility with remote 

analytics platforms. 

 

Fig. 2. Wearable device for physiological monitoring in industrial workers 

Additionally, [15] proposed a smart compression shirt 

incorporating conductive textile electrodes capable of 

measuring heart rate, body temperature, and acceleration. 

Although initially designed for construction environments, as 

depicted in Fig. 3 (inspired by [15]), its potential application 

in heavy industries is notable due to its low intrusiveness and 

ergonomic adaptability. 

 

Fig. 3. Smart shirt with integrated sensors for physiological monitoring in 

occupational environments 
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In parallel, other studies have focused on developing 

distributed network architectures to capture environmental 

variables in real-time. In [96], the MoBiMet system was 

presented, a wireless sensor IoT network that collects 

temperature, humidity, and wind speed data and responds 

dynamically to adverse thermal conditions. Fig. 4 (inspired 

by [96]) illustrates the type of architecture beneficial for large 

industrial complexes with multiple thermal risk zones. 

 

Fig. 4. MoBiMet network architecture for distributed environmental 

monitoring in industrial settings 

The studies reviewed in this sector can be grouped into 

five main categories, based on the type of technology 

implemented and the methodological approach adopted. 

Table III summarizes this classification, presenting the most 

relevant references along with a brief description of their 

specific contributions. 

TABLE III.  TECHNOLOGICAL STUDY CLASSIFICATION IN THE INDUSTRIAL 

SECTOR 

Category 
Parameters 

Description References 

Wearable 
sensors and 

continuous 

monitoring 

Real-time measurement of 
physiological and 

environmental parameters for 

early heat stress detection 

[6], [15], [96] 

AI algorithms 
and machine 

learning 

Development of predictive 

models to anticipate heat-related 

risks through multivariate data 
analysis 

[12], [27], 

[58] 

Evaluation of 

practical 

interventions 

Validation of strategies such as 

thermal breaks, active cooling, 

or redesign of work routines 

[20], [31], 
[63] 

Thermal 
models and 

heat indices 

Application of indices such as 

WBGT, UTCI, or HSI to 

characterize thermal conditions 
in industrial settings 

[30], [39] 

IoT networks 
and distributed 

sensors 

Implementation of IoT-based 

architectures for comprehensive 

thermal analysis and remote 
environmental management 

[50], [66], 

[93] 

 

A total of 14 unique studies specifically addressed the 

industrial sector, accounting for 14.6% of all reviewed 

articles. Validation contexts in this sector were 

predominantly laboratory or short-term field pilots; 

longitudinal operational deployments were rare. 

B. Sector Construction  

High levels of thermal exposure characterize the 

construction sector, as many of its activities are conducted 

outdoors, under hot conditions and extreme weather. The 

combination of intense physical exertion, direct solar 

radiation, and mandatory use of PPE considerably increases 

the risk of adverse health effects, including heat exhaustion, 

heat stroke, and deterioration in physical and cognitive 

performance [19], [24], [25]. 

To address these risks, several studies have implemented 

technological solutions focused on continuous monitoring 

and early prediction of heat stress. Strategies include 

wearable devices that track key physiological and 

environmental variables, such as core body temperature, 

heart rate, and relative humidity, allowing real-time detection 

of hazardous conditions [29], [45], [47]. In parallel, 

predictive models based on artificial intelligence have been 

proposed to analyze multivariable datasets and anticipate 

critical thermal events [21], [25], [59]. The literature also 

reports on ergonomic and organizational interventions, such 

as active breaks, shaded rest areas, and cooling garments, 

which have demonstrated effectiveness in reducing thermal 

load during construction activities. These interventions have 

been validated through experimental field studies and 

simulations in high-temperature settings [35], [91]. 

Thermal environments on construction sites are 

commonly characterized using indices such as WBGT or 

UTCI to assess occupational risk under elevated heat 

conditions [24], [49]. Additionally, recent approaches 

incorporate IoT-enabled networks and distributed sensors 

that enable the capture and transmission of real-time 

environmental data, supporting data-driven decision-making 

across various work zones [66], [90]. Finally, independent 

case studies conducted in diverse geographic contexts have 

enriched the understanding of local thermal risk factors and 

adaptive responses among construction workers. Table IV 

summarizes this classification, presenting the most relevant 

references along with a brief description of their specific 

contributions. 

TABLE IV.  CLASSIFICATION OF TECHNOLOGICAL STUDIES IN THE 

CONSTRUCTION SECTOR 

Category 
Parameters 

Description References 

Wearable 

monitoring 
systems 

Real-time measurement of 
physiological and 

environmental variables via 

portable devices 

[29], [45], 

[47] 

Predictive 

algorithms and 
models 

Use of AI and machine learning 
for the detection and prevention 

of thermal events in 

construction 

[21], [25], 

[59] 

Evaluation of 
interventions 

Validation of ergonomic and 

organizational measures to 

mitigate heat stress 
[35], [91] 

 

Thermal 
indices and 

assessments 

Application of WBGT, HSI, 
and UTCI in construction 

environments. 

[24], [49] 

IoT networks 
and distributed 

monitoring 

Sensor-based systems using IoT 
for thermal analysis on 

construction sites 
[66], [90] 

 

Case studies 

and 
independent 

fieldwork 

Field investigations on specific 

thermal conditions and 

associated risks 

[19], [34], 
[42], [43] 

 

To illustrate the contributing factors to thermal imbalance 

in high-heat construction environments, Fig. 5 (inspired by 
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[43]) outlines the interaction between environmental, 

personal, and operational variables that influence workers’ 

physiological responses. 

 

Fig. 5. Dominant factors influencing heat stress in high-temperature work 

environments 

As shown in Fig. 6 (inspired by [29]), socioeconomic 

factors shape heat vulnerability; a longitudinal study found 

that workers from lower-income countries spent longer 

durations within elevated core-temperature ranges during 

work shifts [29]. 

 

Fig. 6. Time spent by workers in different predicted core-temperature ranges 

during a work shift, stratified by country-income level 

The interaction of air temperature, relative humidity, 

wind speed, solar radiation, metabolic rate, and clothing type 

determines the actual thermal load. Simultaneous monitoring 

of these variables is essential for designing preventive 

strategies that protect workers’ health and ensure 

uninterrupted operation in heat-intensive construction 

projects. In total, 16 studies were identified in this sector 

(16.7%; Table II). Most validations were field-based but 

short, and alignment with dynamic work schedules was 

limited. 

C. Sector Outdoor 

Jobs performed entirely outdoors, such as road 

maintenance, power line installation, public services, or 

open-field agriculture, expose workers to extreme weather 

conditions. The combination of high ambient temperature, 

direct solar radiation, variable humidity, unpredictable wind, 

and high metabolic workload significantly increases the risk 

of heat exhaustion and heatstroke [3], [7], [10], [17]. To 

mitigate these risks, multiparameter wearable sensors, AI-

based predictive models, practical cooling interventions, and 

autonomous IoT networks have been deployed. 

As shown in Fig. 7 (inspired by [17]), wearable 

monitoring systems recorded core body temperature, heart 

rate, and environmental variables in real time during 

extended mobile tasks [36], [48]. Predictive models then 

processed these signals to anticipate critical episodes, 

enabling early warnings and adaptive recommendations [16]. 

The ergonomic interventions evaluated included portable 

misting fans, scheduled breaks, shaded rest areas, and cooling 

garments; in particular, a mist-fan field trial demonstrated a 

significant reduction in net heat load. 

 

Fig. 7. Experimental set-up with a mist-fan and thermal manikin used to 

evaluate cooling interventions in outdoor conditions 

As shown in Fig. 8 (inspired by [7]), a solar-powered IoT 

network collects temperature, humidity, and solar radiation 

across multiple work zones, enabling precise microclimate 

analysis. WBGT and related indices remain the standard 

references for quantifying environmental thermal severity 

[20], [33]. Table V summarizes this classification, presenting 

the most relevant references along with a brief description of 

their specific contributions. 

 

Fig. 8. Solar-powered transmitter box integrating multiple environmental 

sensors for continuous outdoor monitoring 

The reviewed evidence highlights the need for robust and 

adaptable solutions that integrate wearable sensing, AI-

assisted prediction, cooling interventions, and IoT-based 

monitoring, while also considering the socioeconomic and 
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cultural factors that influence heat vulnerability. These tools 

are crucial for safeguarding worker health and ensuring 

productivity in extreme outdoor environments. Overall, 13 

studies (13.5%; Table II) addressed outdoor occupations, 

with evidence concentrated in pilots and short field trials; 

extended, cycle-long validations remain uncommon. 

TABLE V.  CLASSIFICATION OF STUDIES IN THE OUTDOOR SECTOR 

Category 
Parameters 

Description References 

Wearable 
monitoring 

systems 

Wearables that measure 

physiological and 

environmental variables in 
outdoor environments 

[7], [36], [48] 

Predictive 

algorithms and 
models 

AI and machine learning to 

anticipate critical heat stress 
conditions 

[16], [17] 

Evaluation of 

interventions 

Field tests of misting fans, 

active breaks, and personal 

cooling systems 

[33], [40] 

Thermal indices 

and assessments 

Use of WBGT and derived 

metrics to quantify 

environmental thermal 
severity 

[20], [64] 

IoT networks and 

distributed 

monitoring 

Sensor infrastructures 

powered by renewable 
sources for thermal 

surveillance 

[10] 

Case studies and 

independent 
investigations 

Field research on personal 

and environmental factors in 
tropical or arid settings 

[3], [37] 

D. Sector Mining 

Mining activities, whether underground or open pit, 

require intense physical exertion in environments 

characterized by limited ventilation, confined spaces, and 

permanent thermal sources. The combination of high 

temperature, humidity, and metabolic workload makes 

mining one of the sectors with the highest risk of occupational 

heat stress [5], [24], [67]. To address this challenge, recent 

research has developed integrated solutions combining 

multiparameter wearable sensors, AI-based predictive 

models, and targeted intervention strategies to mitigate 

thermal load. 

Wearable devices allow real-time capture of 

physiological variables (e.g., heart rate, skin temperature) and 

environmental parameters (e.g., temperature, relative 

humidity), even in deep tunnels or exposed rock faces [5], 

[24], [84]. These data streams feed artificial intelligence 

models that anticipate heat risk events and recommend breaks 

or operational adjustments [53], [79]. In parallel, thermal 

indices and heat transfer models have been adapted 

specifically for tunnel and shaft environments, improving the 

accuracy of caloric load assessments on mine workers [79].  

Practical interventions have validated the effectiveness of 

localized ventilation, water misting systems, scheduled 

thermal breaks, and underground recovery zones. These 

approaches have shown significant reductions in situ WBGT 

levels and improved cardiovascular recovery times [24], [67]. 

To illustrate thermal risk zoning, Fig. 9 (inspired by [67]) 

presents a heat-management study area implemented in an 

underground mine, where critical regions were delineated to 

install sensors and plan targeted ventilation strategies. 

 

Fig. 9. Heat-management study area used to plan thermal-risk zoning and 

targeted ventilation inside an underground mine 

The studies reviewed for the mining sector were grouped 

according to their primary technological or methodological 

focus. Table VI summarizes the classification of the most 

relevant contributions. 

TABLE VI.  CLASSIFICATION OF TECHNOLOGICAL STUDIES IN THE MINING 

SECTOR 

Category 
Parameters 

Description References 

Wearable sensors and 

continuous monitoring 

Devices that record 

physiological and 
environmental 

parameters in 

underground and open-
pit mines 

[5], [24], [84] 

Predictive models and 
AI 

Algorithms that 

anticipate critical heat 
conditions and optimize 

breaks or ventilation 

[53], [73] 

Evaluation of practical 
interventions 

Validation of localized 

ventilation, water 
misting, and scheduled 

thermal breaks 

[21], [67] 

Site-specific studies 

and case analyses 

Focused analyses on 
specific mining 

operations or 

populations 

[44], [79] 

 

The reviewed advances confirm that combining wearable 

monitoring, predictive analytics, and targeted ventilation 

strategies is essential for safeguarding miner health and 

maintaining productivity in thermally hostile environments. 

Nine studies (9.4%; Table II) were mapped to this sector; 

interoperability constraints and hazardous atmospheres 

limited full-scale field deployment, and longitudinal 

evaluations were scarce. 

E. Sector Agriculture 

Agricultural labor entails intense physical exertion under 

direct solar radiation, high humidity, and marked thermal 

fluctuations throughout the workday. This combination 

significantly increases the susceptibility to heat exhaustion 
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and other heat-related illnesses. To mitigate such risks, recent 

research has incorporated multiparametric wearable devices, 

artificial intelligence (AI)-based predictive models, and 

evidence-based intervention strategies. 

In [8], a flexible, breathable biopatch was introduced, 

capable of recording skin temperature, heart rate, and activity 

level, transmitting real-time data to a remote analytics 

platform to detect potential heat-related injuries. Fig. 10 

(inspired by [8]) illustrates the device’s architecture and 

usage method. Other studies have confirmed the feasibility of 

wearable sensors in real agricultural environments, 

demonstrating resistance to dust, sweat, and repetitive motion 

[29], [37], [40]. Additionally, AI algorithms have been 

implemented to predict critical thermal events and 

recommend hydration or rest based on individual profiles and 

heat exposure [74], [83]. 

Recent field research has also evaluated the effectiveness 

of guided hydration protocols, scheduled breaks, and 

ergonomic strategies to reduce thermal fatigue and renal 

strain among agricultural workers in humid and sunny 

conditions [24], [41], [46]. 

 

Fig. 10. Bioelectronic patch for farmworkers: (a) module overview; (b) 

bending and torsional capacity; (c) protection with waterproof tape; (d) 

installation in the thoracic area; (e) simultaneous recording of temperature, 

heart rate, and movement for HRI monitoring 

The studies identified in this sector are summarized in 

Table VII, grouped according to their predominant 

technological or methodological approach. 

TABLE VII.  CLASSIFICATION OF STUDIES IN THE AGRICULTURAL SECTOR 

Category 
Parameters 

Description References 

Wearable 

sensors 

and 
monitoring 

Wearable devices that capture 

physiological and environmental 

variables in real time during 
agricultural tasks. 

[8], [29] 

AI-based 

predictive 
models 

Algorithms that anticipate critical 

episodes and recommend tailored 
preventive actions. 

[74], [83] 

Practical 
mitigation 

strategies 

Evaluation of scheduled breaks, 

guided hydration, and renal 

protection during prolonged 
fieldwork campaigns. 

[1], [46] 

 

The reviewed evidence highlights the importance of 

integrating wearable sensing, AI-assisted prediction, and 

adaptive intervention protocols to protect worker health and 

maintain productivity in climatically challenging agricultural 

environments. Six studies (6.3%; Table II) focused on 

agriculture, with feasibility demonstrated for wearables; 

however, scalability to extensive crops and long-duration 

validations remains limited. 

F. Sector Indoor Environments 

Industrial indoor settings, such as factories, workshops, 

and plants that operate heavy machinery, accumulate heat due 

to limited ventilation and localized thermal sources, which 

intensify the thermal load on operators. Unlike open-air 

environments, confined spaces hinder the dissipation of heat 

and humidity, often resulting in elevated WBGT values even 

under moderate outdoor temperatures. 

Recent studies have evaluated practical interventions 

such as cooling systems, scheduled breaks, and modified 

workflows to reduce core body temperature and heart rate 

during intense shifts in closed environments [12]. Ergonomic 

investigations in steel plants, foundries, and manufacturing 

workshops have analyzed thermal fatigue and cardiovascular 

strain, recommending adjustments in work-rest cycles and 

ventilation schemes [13], [80]. Environmental sensors and 

thermal models have also been deployed to monitor indices 

such as HSI, WBGT, and TWL, with some studies 

implementing Perceptual Strain Index (PSI) methods to tailor 

recommendations based on clothing and metabolic effort 

[68]. Table VIII presents a classification of the selected 

studies based on their primary technological or 

methodological focus. 

TABLE VIII.  STUDIES IN INDUSTRIAL INDOOR ENVIRONMENTS 

Category 
Parameters 

Description References 

Ergonomic and 
thermal 

assessment 

Analysis of thermal load and 
fatigue in environments with 

localized heat sources. 

[13], [80] 

Sensors and 

thermal indices 

Application of WBGT, TWL, 
and HSI to quantify heat stress 

in enclosed settings. 

[68] 

Practical 

mitigation 
strategies 

Validation of cooling systems 

and scheduled breaks on 
production lines. 

[12], [58] 

 

To visualize the proportion of research per category, Fig. 

11 illustrates the percentage distribution of studies considered 

in this sector. 

 

Fig. 11. Distribution of studies by category in industrial indoor environments 

The results reveal that most studies focus on ergonomic 

and thermal assessments, while others emphasize the use of 

environmental indices or mitigation strategies. Despite the 
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relatively limited literature, this evidence highlights the 

importance of integrating monitoring and adaptive workplace 

design to ensure thermal safety in confined industrial settings. 

Five studies (5.2%; Table II) examined indoor industrial 

environments; device ingress protection and wireless 

reliability constrained sustained field deployments. 

G. Sector Other/Unspecified  

This sector includes research efforts that, due to their 

methodological scope or stage of development, are not 

limited to a specific productive context. It encompasses 

thermal tolerance protocols, digital platforms, sensor 

prototypes under laboratory testing, population-based 

analyses, and multipurpose technological solutions with 

potential for cross-sectoral application. Several studies focus 

on standardized thermal stress testing methods that evaluate 

physiological responses such as heat fatigue, core 

temperature, or heart rate under controlled conditions [28], 

[57], [72], [84], [85]. In parallel, decision-support systems 

have been proposed, integrating environmental and 

physiological variables to provide real-time alerts or 

recommendations for mitigating heat-related risks [78], [94], 

[95], [96], [97]. 

Another set of studies assesses heat stress risk through 

thermal indices like WBGT, HSI, or PSI in generic industrial 

scenarios or simulations, contributing to methodological 

standardization [71], [87], [89], [90], [93]. Several research 

efforts evaluate emerging wearable systems or monitoring 

platforms that are still under development and have not yet 

undergone field deployment. However, they present 

promising features such as energy efficiency, compactness, 

and system integration [60], [66], [86], [91], [92]. Population-

based or cross-sectional studies explore heat vulnerability 

across different geographic regions and occupational settings, 

offering critical insights into how socioeconomic and 

environmental factors influence heat risk exposure [23], [44], 

[45], [46], [61], [75], [98], [102], [106]. 

Lastly, a large group of contributions proposes 

technological applications that are broadly applicable or not 

confined to any specific sector. These include wearable 

monitoring devices, distributed sensing platforms, and 

intelligent systems with potential utility in construction, 

mining, agriculture, and manufacturing [34], [42], [62], [63], 

[68], [73], [74], [76], [77], [79], [81], [82], [88]. Table IX 

summarizes the classification of these studies by their 

technological or methodological focus. At the same time, Fig. 

12 presents the percentage distribution across categories, 

highlighting that multipurpose applications and population-

based studies account for over half of the total publications in 

this group. 

These studies expand the range of available tools for 

managing occupational heat stress and provide a solid 

methodological foundation that can be adapted and validated 

in future sector-specific contexts. Thirty-three studies 

(34.4%; Table II) fell into this group, dominated by thermal 

testing protocols, decision-support tools, and lab-only 

prototypes. This predominance indicates methodological and 

early-stage emphasis rather than sectoral irrelevance; 

translating these approaches to field-based and longitudinal 

validations is a priority before sector-specific generalization. 

 

Fig. 12. Distribution of studies by category within the "Other/Not Specified" 

TABLE IX.  STUDIES IN THE “OTHER / UNSPECIFIED” SECTOR CLASSIFIED 

BY CATEGORY 

Category 
Parameters 

Description References 

Thermal testing 

methods and 
tolerance protocols 

Standardized protocols and 
metrics to evaluate 

physiological responses to 

heat 

[28], [57], 

[72], [84], 
[85] 

Decision-support 

systems and 

platforms 

Algorithms and Alert Systems 

for Heat Stress Risk 

Management 

[42], [63], 

[73], [78], 

[79] 

General heat risk 

assessment 

Quantification of heat stress 
in generic industrial 

environments 

[68], [71], 
[74], [87], 

[89] 

Sensors or systems 

under development 

Monitoring prototypes 
validated only under 

laboratory conditions 

[60], [66], 
[86], [90], 

[91] 

Population-based 

or cross-sectional 
studies 

Epidemiological analyses on 

heat vulnerability in various 
labor contexts 

[23], [44], 

[45], [46], 
[61], [75] 

Multipurpose 
applications 

Technological solutions with 

cross-sectoral application 

potential 

[34], [62], 

[76], [77], 
[81], [82], 

[88] 

IV. CROSS-SECTIONAL COMPARATIVE ANALYSIS 

The comprehensive analysis of the 96 unique studies 

reviewed reveals sectoral asymmetries in technological 

focus, research density, and outstanding implementation 

challenges. As shown in Fig. 13, the “Other / Unspecified” 

group contains the largest share (34.4%) of studies, 

comprising early-stage proposals, sensor prototypes, and 

thermal tolerance protocols that have not yet been validated 

in specific occupational environments. The construction 

(16.7%) and industrial (14.6%) sectors follow, reflecting 

their priority in developing intelligent systems for 

occupational heat stress. 

 

Fig. 13. Distribution of studies by sector (n = 96) 
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In contrast, mining (9.4%), agriculture (6.3%), and indoor 

environments (5.2%) remain underrepresented despite high 

thermal exposure, indicating a research gap and the need for 

targeted innovation. Table X summarizes the key findings by 

sector, including the predominant technology adopted, the 

most frequently applied thermal index, and the main technical 

or methodological gap identified. 

TABLE X.  COMPARATIVE SUMMARY OF RESULTS BY SECTOR 

Sector 

Parameters 

No 
Dominant 

Technology 

Most 

Used 

Thermal 

Index 

Main 

Identified 

Gap 

Industrial 14 

Multiparameter 
wearables 

connected to 

IoT networks 

WBGT 

Lack of 

longitudinal 
validations 

during 

extended work 

shifts 

Construction 16 

Predictive AI 

integrated into 
wearable 

sensors 

WBGT / 
UTCI 

There is a weak 

integration 
between 

algorithms and 

dynamic 
construction 

schedules 

Outdoor 

Environments 
13 

Rugged sensors 

and cloud-

based AI 
models 

WBGT 

Limited 

integration of 
wind and solar 

radiation into 

real-time alerts 

Mining 9 

Durable 
wearables and 

targeted 

ventilation 
systems 

Tunnel-

adjusted 

WBGT 

Reduced 

interoperability 

in deep 
galleries and 

gas-rich 

environments 

Agriculture 6 
Flexible 

bioelectronic 

patches 

WBGT 

Lack of 
scalability in 

extensive crops 

and absence of 
microclimate 

stations 

Indoor 

Environments 
5 

Cooling 

systems 
combined with 

planned work 

breaks 

TWL / 

HSI 

Limited 
availability of 

dust- and 

vapor-resistant 
wireless 

sensors 

Others / 

Unspecified 
33 

Standard 
thermal 

protocols and 

decision-
support 

platforms 

WBGT / 

HSI 

Insufficient 

transfer of lab-

based testing to 
field validation 

 

From a technological perspective, wearable sensors, 

particularly those integrated with IoT platforms, remain the 

most widely adopted approach across various sectors, 

supported by advancements in miniaturization and real-time 

data processing. WBGT remains the dominant thermal index. 

However, studies in enclosed or humid environments 

increasingly apply HSI or TWL, suggesting the need for 

alternative metrics sensitive to evaporative limitations. 

Cross-sectoral gaps fall into three recurring themes: (1) 

insufficient longitudinal evaluations across work cycles; (2) 

interoperability limitations due to fragmented protocols and 

non-standardized data; and (3) reduced model 

personalization, with few systems adapting to individual 

variables like hydration status, acclimatization, or 

comorbidities. 

Nonetheless, opportunities for cross-pollination of 

technologies are evident. For example, ventilation strategies 

developed in mining could be repurposed for subway 

maintenance or underground construction. Similarly, 

lightweight patches from agricultural trials show promise in 

factory line monitoring. Finally, tolerance protocols from the 

“Other” group offer a methodological foundation for 

validating wearable devices before real-world deployment. 

This comparative review serves as a bridge from sector-

specific findings to the discussion section, where we assess 

the theoretical implications, identify remaining limitations, 

and outline a forward-looking research agenda. 

V. DISCUSSION 

A. Main Findings of the Study 

An analysis of 96 scientific articles published in recent 

years confirms that research on occupational heat stress 

continues to focus primarily on the industrial, construction, 

and outdoor sectors. In contrast, sectors such as mining, 

agriculture, and indoor environments receive comparatively 

less scientific attention. The predominant technological trend 

is the implementation of multiparameter wearable devices 

integrated with IoT networks, which are capable of 

monitoring physiological and environmental variables in 

real-time. The WBGT index is the most commonly used 

thermal indicator across all sectors. However, in confined and 

humid environments, alternatives such as TWL or HSI are 

preferred. At the same time, UTCI is increasingly adopted in 

the construction sector to account for solar radiation and wind 

effects [22], [33], [66].  

Key cross-sectoral gaps include the lack of longitudinal 

validation in operational environments, heterogeneous data 

formats that limit interoperability, and inadequate 

customization of alerts, which rarely account for individual 

risk factors such as hydration levels or acclimatization status. 

Across the corpus, validation contexts were skewed toward 

lab-only, simulated/pilot, or short field trials, with relatively 

few longitudinal field deployments, reinforcing concerns 

about external validity and sustained effectiveness under 

realistic work-rest cycles. Given these patterns and the 

heterogeneity of outcomes and devices, quantitative pooling 

was not attempted; instead, a structured comparative 

synthesis was undertaken using a priori validation categories 

to support like-for-like interpretation. 

B. Comparison with Previous Studies 

Earlier reviews, before 2019, acknowledged the 

fragmentation of thermal indices and the limited execution of 

extended field trials. However, they lacked a quantitative 

sector-based classification. This review fills that gap by 

categorizing all 96 articles across seven distinct sectors, 

showing that over 34% belong to an “Other / Unspecified” 

category, highlighting the continued presence of laboratory 

or methodological studies that have not yet been validated in 

real-world scenarios. While the literature has long 

emphasized the potential of AI-based prediction, only 28% of 

the reviewed articles implemented predictive algorithms, and 
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fewer than 20% validated them in actual field conditions [16], 

[74], [83]. Findings from the mining sector align with prior 

observations on sensor interoperability limitations in deep or 

gas-rich environments [67]. Still, our review also documents 

successful applications of targeted ventilation and rugged 

wearables [24], [84]. Notably, some studies report adequate 

performance of WBGT-based screening in temperate, low-

humidity contexts. In contrast, others demonstrate 

underestimation of risk in humid or high-radiation settings, 

evidence that supports context-contingent selection of 

thermal indices rather than a single universal metric. 

Likewise, reported compliance with wearable systems varies 

widely across sectors and geographies; factors such as PPE 

burden, device comfort, and data-privacy perceptions appear 

to moderate real-world uptake, which may explain divergent 

conclusions in prior syntheses. 

C. Implications and Interpretation of Findings 

The prominence of wearable solutions stems from 

advances in electronic miniaturization, wireless 

communication, and declining production costs. However, 

the generalized reliance on WBGT may underestimate risks 

in highly humid or radiant conditions. There is a growing 

need to adopt hybrid thermal indices that incorporate wind 

speed, solar radiation, and evaporative cooling. The unequal 

distribution of studies suggests a concentration of research in 

infrastructure-rich sectors, while remote or informal settings 

such as extensive agriculture or artisanal mining remain 

underexplored. Contextual and socioeconomic variables such 

as access to hydration, acclimatization support, and workload 

patterns should be integrated into predictive systems to 

ensure effective risk mitigation, as supported by cross-

sectional studies on vulnerability [29], [44].  

Drawing on the sectoral synthesis, practical adoption 

should couple sensing with organizational controls: 

structured work-rest regimens, shaded/conditioned recovery 

areas, hydration protocols, and task rotation calibrated to 

metabolic rate and PPE burden. Index selection can follow a 

decision pathway: WBGT for dry, temperate settings with 

moderate radiation; UTCI or hybrid indices when solar load 

and wind effects are material; and HSI/TWL, where 

evaporative limitation is dominant, each paired with sector-

specific alert thresholds to reduce false positives/negatives. 

From a systems perspective, interoperable data schemas and 

open protocols are pivotal; without standard message formats 

and device profiles, multi-vendor integration and cross-site 

learning remain constrained. Data governance and privacy-

preserving analytics (e.g., federated approaches) are 

recommended to enable model updates across sites while 

respecting worker privacy and regulatory requirements. 

Equity and cost considerations are central in low-resource 

settings; low-cost, ruggedized wearables, offline-capable 

edge analytics, and simplified dashboards for supervisors can 

improve feasibility without sacrificing safety performance.  

As summarized in Table XI, a sector-level technology 

validation roadmap is provided for operational use. The 

roadmap organizes actions by sector and time horizon to 

translate evidence into deployment steps. Near-term actions 

prioritize open data schemas, context-contingent index 

selection (WBGT/UTCI/HSI/TWL), short field pilots, and 

organizational controls (work–rest cycles, hydration, shaded 

recovery areas). Mid-term actions emphasize multi-site 

longitudinal evaluations, multi-vendor interoperability, edge 

analytics for low-connectivity sites, and simplified 

supervisory dashboards. Longer-term actions focus on hybrid 

index calibration by sector and climate, privacy-preserving 

learning across sites, and personalized alerts that integrate 

workload, PPE burden, and acclimatization. 

D. Strengths and Limitations 

Two key strengths define this review. First, the systematic 

classification of the literature into seven well-defined sectors 

enabled the precise identification of sector-specific 

challenges and opportunities for technology transfer, such as 

applying validated mining ventilation strategies in confined 

indoor environments. Second, by incorporating cross-sectoral 

and early-stage innovations under the “Other / Unspecified” 

category, this study provides a broad foundation for future 

field validation and sectoral adaptation. However, limitations 

include the time window, which may have excluded 

emerging innovations in preprint or patent stages, and the 

restriction to English-language articles, potentially 

underrepresenting regional advances.  

TABLE XI.  SECTOR-TIME HORIZON ROADMAP FOR DEPLOYING OCCUPATIONAL HEAT STRESS SYSTEMS 

Sector Near-term (0–6 mo) Mid-term (6–24 mo) Long-term (24+ mo) 

 

 
Industrial 

Open data schemas; context-based index 

(WBGT/HSI/TWL); short field pilots; work rest 

Multi-site longitudinal studies, 

interoperability (multi-vendor), edge 
analytics, dashboards & training 

Hybrid index calibration by plant, privacy-

preserving learning, personalized alerts, and 
cost-effectiveness 

 

 

Construction 

Standardize data; context index (WBGT/UTCI); 

pilots on active sites; shaded recovery 

Longitudinal deployments across projects; 

interoperability; edge analytics; supervisor 

dashboards 

Hybrid indices incl. wind/solar; federated 

learning across projects; personalized alerts by 

task & PPE 

 

 

Outdoor 

Microclimate mapping; context index 

(WBGT/UTCI); pilots during peak heat; work 

rest/hydration stations 

Multi-site longitudinal seasons, 

interoperability, and offline edge analytics in 

low connectivity 

Hybrid index calibration incl. radiation; 

privacy-preserving updates; personalized alerts 

by workload 

 

 

Mining 

Tunnel-adjusted WBGT; ventilation zoning; 

pilots in critical headings; recovery areas. 

Longitudinal deployments, gas-safe 

interoperability, and edge analytics for 

underground networks 

Sector-specific hybrid indices; privacy-preserving 

learning; alerts integrating PPE & acclimatization 

 

 

Agriculture 

Low-cost rugged wearables; crop-microclimate 

index (WBGT/UTCI); pilots 

Longitudinal multi-farm deployments; 

interoperability; offline edge analytics; simple 

dashboards 

Hybrid indices by crop/region; 

privacy-preserving learning; personalized 

alerts 

 
 

Indoor 

Open schemas; process-based index 
(HSI/TWL/WBGT); pilots; ventilation & rest 

areas 

Longitudinal across lines/shifts, interoperability, 
edge analytics, and operator dashboards/training 

Hybrid indices by enclosure; privacy-preserving 
learning; personalized alerts; implementation 

studies 
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Additionally, due to high variability in metrics, 

methodologies, and devices, the review did not perform a 

quantitative meta-analysis. Potential publication bias, 

geographic skew (with a concentration of studies in high-

income or infrastructure-rich regions), and sponsor/funding 

influences on topic selection are acknowledged and should 

temper generalization of sectoral percentages. Mitigation 

steps implemented in the review included dual independent 

screening with adjudication, inter-rater agreement targets, 

harmonized search strategies with pilot/sensitivity checks, 

and explicit validation categories; nevertheless, translation of 

lab-only and pilot findings to cycle-long operations remains 

a critical evidence gap that future studies should prioritize 

through multi-site, longitudinal, and context-aware designs. 

VI. CONCLUSION 

This review provides a sector-specific comparative 

synthesis of 96 scientific articles on intelligent systems for 

predicting and mitigating occupational heat stress. The 

evidence confirms the predominance of multiparameter 

wearables integrated with IoT platforms and the widespread 

use of WBGT as a baseline screening metric, alongside 

increasing adoption of alternative indices (e.g., UTCI, HSI, 

TWL) in contexts where solar load, wind, or evaporative 

constraints materially affect risk. Cross-sectoral gaps persist 

in several key areas, including longitudinal validation under 

operational conditions, interoperability across devices and 

platforms, and the personalization of alerts to account for 

factors such as hydration, acclimatization, workload, and 

PPE burden. This review advances the field by articulating a 

theory-informed, sector-specific framework that links 

sensing modalities, validation maturity, and organizational 

controls, clarifying when and why particular indices and 

technologies are more likely to succeed in practice. 

From an applied standpoint, continuous monitoring 

coupled with context-aware indices can support timely 

decisions on work-rest cycles, hydration, recovery areas, and 

task rotation, particularly in industrial, construction, and 

outdoor settings that dominate current evidence. In contrast, 

mining, agriculture, and indoor environments remain 

underrepresented in cycle-long deployments, limiting 

generalizability. Priority should be given to agriculture and 

mining, where high thermal exposure coincides with limited 

longitudinal evidence and infrastructural constraints that 

challenge real-world scale-up. Scalability and sustainability 

depend not only on device performance but also on 

interoperable data schemas, governance, and privacy 

safeguards, as well as total cost of ownership considerations 

that are pivotal in low-resource environments. Stakeholder 

engagement, including workers, supervisors, unions, and 

regulators, should be embedded from design to deployment 

to enhance compliance, ethical acceptability, and policy 

alignment. 

Limitations include methodological heterogeneity that 

precluded quantitative meta-analysis, restriction to 

English-language publications, and a time window that may 

have excluded emergent preprints or patents. Potential 

publication and funding-source influences, as well as 

geographic skew toward infrastructure-rich regions, should 

temper overgeneralization of sectoral proportions and 

performance claims despite the mitigation steps implemented 

in this review. 

Future research should prioritize interoperable open data 

with privacy-preserving model updates; multi-site, cycle-

long field deployments first in agriculture and mining; 

calibration of hybrid indices and sector-specific alert 

thresholds by climate and task; and 

implementation/economic evaluations that quantify 

feasibility, fidelity, and equity impacts. In the near term, 

organizations can pair context-contingent index selection 

with structured work–rest, hydration, and recovery protocols, 

and simplified supervisory dashboards; mid- and longer-term 

priorities include multi-site longitudinal deployments, 

interoperability testing at scale, and calibration of hybrid 

indices by sector and climate.  
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