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Abstract—The consumption of electricity is substantially 

increasing as the striving of finding low carbon source of energy 

like solar energy. Through this research a consideration of three 

models to be addressed, SDM, DDM, and TDM, to extensively 

studying the functioning of PV cells. The objectives of the study 

are set to include plotting I-V and P-V characteristics, power 

output analysis over time, the calculation of energy 

accumulation and errors, as well as relative and absolute errors 

in I-V. The paper also determines the RMSE and analysis of the 

EQE of silicon, organic, perovskite and quantum dot PV cells. 

Mathematical analyses are used to solve nonlinear equations 

and applied simulation is adopted using MATLAB. The result 

provided an insight towards the electrical behavior of the PV 

cell at different conditions, demonstrating how external and 

model variables impact them. This class of information is vital 

for understanding physics, renewable energy and aid towards 

creating the precise analysis of PV cell function through the 

optimization of PV technology. The research also addresses 

critical issues such as energy conversion in PV systems, and 

error analysis. 

Keywords—Efficient Energy; Error Analysis; External 

Quantum Efficiency; PV Cells; Sustainability. 

List of abbreviations 

PV: Photovoltaic 

PVCs: Photovoltaic cells 

SDM: Single-diode model 

DDM: Double-diode model 

TDM: Three-diode model 

I-V: Current-voltage 

P-V: Power-voltage 

RMSE: Root means square error 

EQE: External quantum efficiency 

RESs: Renewable energy sources 

MPP: Maximum power point 

EVs: Electric vehicles 

V2G: Vehicle-to-grid  

PSO: Particle Swarm Optimization  

GA: Genetic Algorithms  

ABC: Artificial Bee Colony  

NRM: Newton-Raphson method  

NRMC: NRM convergence 

SMC: Secant method convergence  

FPIC: Fixed-point iteration convergence 

IQE: Internal quantum efficiency 

SM: Secant Method 

FPI: Fixed-Point Iteration 

Rs: Series resistance 

Rsh: Shunt resistance 

FG: First generation  

SG: Second generation 

TG: Third generation 

SR: Solar irradiance 

Voc: Open circuit voltage 

Isc: Short circuit current 
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I. INTRODUCTION 

The PV outcome was first detected in 1839 by Becquerel; 

this essentially set in place the underlying principles for solar 

technology as we know it today [1]-[3]. What more 

contemporary reviews say is that Becquerel's early 

experiments already suggested the fact that photocurrent 

increases with light intensity [1], [4], [5]. A historical analysis 

indicates that the photoconductive nature of selenium was 

first reported by  Smith in 1873 [1], [4]. Follow‑up work by 

Adams and  Day in 1876 demonstrated the direct generation 

of electric current from sunlight without mechanical parts [1], 

[6]. By 1883, Charles Fritts had fabricated the first working 

selenium PVCs, an achievement cited as the origin of 

practical PV devices [1]. A PVC is the fundamental building 

block of every PV system [7].  

Modern studies describe PVCs as large‑area 

semiconductor junctions that convert incident photons 

directly into electrical power [4]. Because this process is 

silent, emissions‑free, and highly scalable, recent market 

analyses report accelerated adoption of PV for both 

residential micro‑generation and utility‑scale plants 

worldwide [8], [9]. To predict device behavior, researchers 

still rely on equivalent‑circuit models; among them the SDM 

and the DDM remain the most broadly employed [4], [7]. The 

SDM is popular because it requires only five parameters and 

integrates easily into commercial simulation 

platforms [7], [10]. In the SDM, a current source representing 

the photogenerated charge carriers is placed in parallel with a 

diode and a shunt resistance, sometimes augmented by a 

series resistance for better accuracy [7]. Recent work has 

refined the SDM to improve accuracy under varying 

irradiance and temperature, yielding error reductions 

below 1 % on real I–V data [10].  

RESs encompass various technologies including solar, 

wind, hydro, and geothermal systems [4]. Traditional 

electricity supply methods, such as hydroelectric or thermal 

power plants, often introduce disturbances in voltage and 

frequency that impact power quality for end users [11]. To 

address such challenges and to promote cleaner energy 

alternatives, PV technology has emerged as a viable and 

increasingly adopted solution [4], [12]. Among all RESs, PV 

energy is considered to have the highest potential due to its 

abundance and scalability in electricity generation [12]. 

PV systems require accurate modeling to optimize 

performance under varying environmental conditions. Due to 

its simplicity, the SDM remains widely employed. Other 

models, more advanced in incarnation, have been proposed 

to capture non-ideal characteristics of PVCs with greater 

accuracy: the DDM and the TDM [7]. Such models are very 

much required to build up the electrical behavior of solar cells 

and then for better energy conversion performance [7]. 

Simulation-based modeling with different physical and 

environmental parameters allows power electronics 

engineers to predict PV system behavior with greater 

reliability [10]. Numerical simulation methods, especially 

those using MATLAB® environments (temperature, and 

irradiance) have been the recent target of improvement for 

system analysis and evaluation of performance (I–V and P–

V, series resistance, and diode quality factor) [13]. 

Programming complexity stands out as one major 

challenge faced by these methods. For instance, using a 

combination of MATLAB® scripts and C-language routines 

increases difficulty for users lacking programming expertise 

[14], [15]. To improve accessibility, recent efforts have 

focused on MATLAB®-only implementations where the 

PVC behavior is modeled using fundamental mathematical 

equations [10]. Functions developed by researchers such as 

González and Oi have enabled calculation of module current 

based on voltage, solar irradiance, and temperature input data 

[13], [16]. By fixing one parameter—either irradiance or 

temperature—it is possible to produce characteristic I–V and 

P–V curves and determine the MPP using additional script-

based algorithms [10], [16]. 

Urban deployment of RESs, however, presents technical 

challenges. For instance, shading from buildings affects PV 

panel efficiency, and airflow obstructions reduce wind 

energy harvesting potential [17], [18]. In these environments, 

electricity is typically not supplied directly from generation 

units to end-users but is mediated through energy storage 

systems such as batteries. In this context, high-voltage 

batteries from EVs can serve as buffer storage units, enabling 

more dynamic energy management [19], [20]. 

Forecasts by international energy organizations estimate 

that by 2030, the global number of EVs could reach 

approximately 160 million units [21], [22]. This rapid 

expansion supports the concept of V2G networks, where EVs 

function as distributed energy storage resources. Such a 

system can enhance grid stability and flexibility in urban 

power infrastructure [23]. Nevertheless, realizing this 

potential necessitates the deployment of smart charging 

stations that can manage bidirectional power flow between 

EVs and the city's power grid [24].  

The integration of RESs is becoming increasingly critical 

for ensuring sustainable energy supply in urban 

infrastructures [25], [26]. Despite this progress, these 

technologies still expression tasks in terms of efficacy and 

reliability, particularly in urban environments [27]. One 

promising approach to enhance system performance is 

through the deployment of EVs, which can serve not only as 

transport solutions but also as mobile energy storage units 

capable of accumulating and transferring surplus energy back 

to the city grid [28]. 

The implementation of V2G systems requires the 

development of smart charging infrastructure capable of 

supporting bi-directional power flow and intelligent load 

management [24]. However, most current research on 

charging infrastructure tends to focus on optimizing the 

spatial location and density of charging stations, often based 

on socioeconomic modeling and behavioral assumptions of 

EV users [29]. While this is valuable, it overlooks the 

dynamic energy-balancing potential of distributed EV fleets 

and their strategic integration into urban power systems [30]. 

The number of grid-connected PV plants, including those 

with integrated battery storage systems, continues to rise 

annually in many countries due to policy incentives and 

declining technology costs [31], [32]. In 2021, Germany led 

the European solar market by adding 5.3 GW of new PV 

capacity, followed by Spain (3.8 GW), the Netherlands (3.3 
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GW), Poland (3.2 GW), and France (2.5 GW), reflecting a 

broad continental push toward renewable deployment [33].  

The classification of PVCs is commonly based on 

technological factors, material composition, structural 

design, and generation types [34], [35]. According to 

generational categorization, PV technologies are divided into 

three primary groups FG\ SG\ TG [36]. FG encompasses 

silicon-based technologies, including monocrystalline and 

polycrystalline silicon PVCs, which dominate the 

commercial market due to their stability and efficiency [37]. 

The SG typically includes thin-film technologies such as a-

Si, CdTe, and CIGS, offering lower material usage and 

flexibility advantages [38], [39]. The TG introduces more 

advanced concepts, such as perovskite PVCs, organic PVs, 

quantum dot PVCs, and dye-sensitized PVCs, all aiming to 

push the efficiency-cost boundary of traditional technologies 

[40], [41]. 

PVCs offer numerous advantages, including low 

environmental impact during operation, low maintenance 

requirements, and potential for reducing electricity bills, 

while also increasing property value [42], [43]. However, 

several drawbacks remain, such as the relatively non-green 

nature of some manufacturing processes, high initial capital 

costs, the necessity for power inverters, and intermittent 

energy production due to PVCs dependency [44], [45]. 

In 2020, Oxford PV developed a hybrid perovskite-

silicon tandem cell that surpassed 29% power conversion 

efficiency, marking a significant advancement in the field 

[46], [47]. Recent studies suggest that even higher 

efficiencies could be achieved through integration of 

nanostructures such as silicon nanowires, nanotubes, and 

novel materials like organic dyes and conductive polymers, 

especially within the context of third-generation solar cells 

[48], [49]. Although lab-scale devices have reached 

efficiencies of up to 47.1% under concentrated light, these 

technologies are still in early research and have yet to reach 

commercial viability [50]. 

This paper begins by outlining the essential 

characteristics of PVCs. Following that, the temporal energy 

and power output of various PV technologies is presented 

graphically, highlighting system performance dynamics [51]. 

A subsequent section focuses on numerical analysis through 

the implementation of iterative techniques commonly applied 

in PV energy modeling. By considering a nonlinear function 

g(x), its roots are explored graphically using the NRM, the 

SM, and FPI [52]. 

Lastly, three mainstream models of equivalent circuit of 

PVCs are introduced: The SDM, DDM, and TDM. Both 

models hold varying concentrations of physical phenomena 

including recombination and leakage losses, and they must be 

wise to depict solar energy systems exactly and wisely in 

relation to their performance prediction and simulation 

accurately [53]. 

This paper provides a critical examination of behavior of 

PVCs through three of the commonly deployed modelling 

methods: The SDM, the DDM and the TDM. I- V and P- V 

parameters are tested under different environmental, 

electrical conditions such as Rs, Rsh, PVCs temperature, and 

irradiance of sun rays. These parametric manipulations give 

profound understanding of nonlinear response of PVCs their 

performance at real situations in which its works can be 

simulated and compared between theoretical conditions and 

those faced in the real situation where the PVCs are stressed. 

One of the new contributions of the work is the 

quantitative measure of absolute error in terms of the 

character of expected and actual I-V and P-V for the three 

models. The output of graphical output is the use of plotting 

absolute error versus voltage plots and real-time monitoring 

of actual and theoretical power output and it gives vital 

validation figures of model fidelity. Moreover, upon 

visualizing and comparing dynamic output performance in all 

three different models not only does the paper reveal 

constraints of simplified modeling structures such as SDM to 

recombination and leakage effects, but it also demonstrates 

the greater accuracy of using DDM and TDM at yielding 

dynamic output in response to changing environmental 

conditions. 

This study can eventually be interpreted as the asset of 

analyzing the behavior of high resolution and accuracy of 

PVCs. It assists engineers, researchers, and system designers 

in the choice of PV models as well optimize them in order to 

be used in simulating, forecasting the performance of system 

and control of power electronics in real time, particularly 

those that involve uncertainties of the environment.  

II. METHODS 

A wide array of computational methodologies has been 

proposed and utilized for modeling PVCs, typically classified 

into direct and indirect techniques [32]. Indirect methods 

include heuristic and metaheuristic algorithms such as PSO, 

GA, and ABC, which are widely used for estimating key 

parameters like the five, seven, or eight-parameter models of 

PVCs [54], [55]. On the other hand, direct methods, such as 

Newton’s method, are extensively applied in engineering and 

mathematical contexts to solve nonlinear systems of 

equations, including those emerging from PV modeling [56], 

[57]. 

Nonlinear functions, often denoted as g(x), naturally arise 

in the modeling of I–V characteristics of PV panels, 

regardless of whether the SD, DD, or more complex 

equivalent circuit models are used [58]. These nonlinear 

functions encapsulate physical behavior such as diode 

recombination and series/shunt resistance effects, and are 

often difficult to solve analytically [59]. In this context, 

computational modeling becomes critical, allowing the 

simulation and optimization of PVCs behavior under varying 

irradiance and temperature conditions [60]. 

To accurately solve such nonlinear equations, iterative 

numerical methods are preferred. Among them, NRMC, 

SMC, and FPIC stand out for their convergence capabilities 

in solar modeling tasks [61]. From a wide selection, in 

particular, NRMC remain the most popular iterative method 

owing to its quadratic convergence and easy implementation 

for nonlinear transcendental functions [62]. The I–V and P–

V relationships in the SD–PVC equivalent system is obtained 

from an implicit nonlinear transcendental equation. 

Analytical solution almost never exists for such an equation, 
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thereby drawing the focus of numerous numerical solution 

procedures that have been developed to solve it efficiently 

[63]. Among the many methods proposed, the NRMC being 

the popular one, due to its high convergence rate whenever 

the first approximation lies sufficiently near the actual root 

[64]. This iterative methodology is capable of being 

employed in almost any area of engineering and thus has 

justifiably come to be considered one of the best solutions to 

modeling problems of a PV nature [64].  

The NRMC is a popular method for numerically solving 

the nonlinear equations due to their property of fast 

convergence if certain requirements are fulfilled [65]. When 

an initial estimate is provided nearby the root, the sequence 

generated by the iterative procedure tends to converge to the 

best root for the function [66]. Mathematically, NRMC can 

therefore be expressed by the recursive formula [67]: 

𝑥𝑘+1 = 𝑥𝑘 −
𝑓(𝑥𝑘)

𝑓′(𝑥𝑘)
 (1) 

where, 𝑥𝑘+1 is the 𝑘𝑡ℎ iteration root estimation update, 𝑓(𝑥𝑘) 

evaluation function at 𝑥𝑘, and 𝑓′(𝑥𝑘) is its derivation at that 

point. 

This expression is applied repeatedly until |𝑓(𝑥𝑘+1)| 
becomes sufficiently close to zero, indicating convergence of 

the root estimate [68]. The method's simplicity and rapid 

convergence make it a preferred choice for solving nonlinear 

models in engineering and scientific computations, including 

PVC modeling and optimization tasks [69].  

Another iterative method that is used is the SMC. This 

method, unlike the NRMC, is used in cases where the first 

derivative cannot be easily determined by the NRMC. So, this 

is a simpler method through which the first derivative is first 

approximated. The SMC can be determined from two 

preliminary estimates. This iterative method approximates 

the derivative using the difference coefficient [70]: 

𝑥𝑘+1 = 𝑥𝑘 − 𝑓(𝑥𝑘)
𝑥𝑘 − 𝑥𝑘−1

𝑓(𝑥𝑘) − 𝑓(𝑥𝑘−1)
 (2) 

While the iterative fixed-point method is applied to equations 

of the form 𝑥 = 𝑔(𝑥): 

𝑥𝑘+1 = 𝑔(𝑥𝑘) (3) 

This is also an iterative method that is widely used. In this 

case, we can iterate until the error is at such a threshold. In 

these iterative methods it is important that the function 𝑔(𝑥) 

be rearranged in a form appropriate for the respective method 

in order to get the solution as close as possible to the true 

value with a small error. Consider a polynomial function of 

𝑔 such that [71]: 

g(𝑥) = 𝑥3 − 6𝑥2 + 11𝑥 − 6 = 0 (4) 

This is a nonlinear equation that we want to solve 

iteratively because this function does not have an exact 

analytical solution. For the FPIC, the function 𝑔(𝑥) should 

be rearranged to a form suitable for the method. Fig. 1 shows 

the solution of a given function with three different numerical 

methods, as follows: Fig. 1(a  - (  (NRMC), Fig. 1(b (    - (SMC), 

and Fig. 1(c  - ( (FPIC). Finally, we emphasize the fact that g-

functions are related to a specific problem, such as a 

nonlinear equation that describes the nonlinear dynamic 

behavior of PVCs, as we will see later in this study. 

Therefore, the study, analysis, and solution of these functions 

is very important for science and engineering as well as many 

other fields such as medicine, economics, etc.  

 

Fig. 1. (a) NRMC, (b) SMC, (c) FPIC 

Several recent studies have introduced various 

mathematical models to analyze the electrical behavior and 

output characteristics of PVCs [72]. These models aim to 

represent the I–V and P–V relationships under diverse 

operational situations [73]. The most commonly adopted 

models include the SDM, which simplifies the PVC into a 

basic equivalent circuit entailing of a current source, diode, 

Rs, and Rsh [74]. The DDM adds an extra diode to improve 

accuracy in the low-voltage region [75]. Meanwhile, several 

physical models are able to simulate devices, whereas at the 

circuit level, models such as SPICE allow for simulating PV 

systems at a fairly general level, including simulation coupled 

with power electronics [77], [78]. The modified SD model 

usually also goes by the many-names one of the "five-

parameter" method for practical variation of accurately fitting 

experimental data and improving parameter extraction [79]. 

The increased level of mathematical complexity, however, 

renders it less favored in routine simulation tasks than simpler 

models with which it would usually be compared, such as the 

basic SDM or DDMs [80]. Another alternative includes 

utilizing detailed physical models based upon semiconductor 

theory that provide insights into charge carrier 

recombination, optical losses due to reflection and 

transmission, and temperature-dependent effects in PVCs 

[81]. These physical models offer a more detailed 

understanding of intrinsic behavior than the approximations 

given by circuit-level representations [82]. 

By the same token, empirical modeling techniques have 

recently been supported and stressed by many researchers. 

Setting up equations that are predictive usually implies the 

use of polynomial or exponential functions given the few 

resources available for measuring only I-V characteristics 

and possibly environmental variables such as irradiance and 

temperature [83].  

On the other hand, it is widely held that the SPICE-based 

circuit modeling approach to PV simulation and optimization 

is the best, allowing electronic engineers the capability to 
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simulate the dynamics of PV modules under either load or 

operating conditions.  

Conversely, these models seek to reproduce the electrical 

behavior of PV systems through the use of equivalent circuit 

representations such as single-diode or double-diode models 

[85]. SPICE-based implementations permit the exact 

simulation of performance variations in the PV system due to 

environmental changes like irradiance and temperature [86]. 

Moreover, SPICE simulations provide a means for 

investigating dynamic responses under fluctuating load 

conditions, thereby making them an essential tool in system-

level PV design and reliability studies [87], [88]. 

There has always been a necessity to consider a three-

parameter model because of its balance in computational 

efficiency and accuracy when simulating I–V characteristics 

of PV modules." The model's ability finally rests upon the 

method employed for estimating unknown parameters, 

mostly considered to be photo-generated current (𝐼𝑝ℎ), 

saturation current of diode (𝐼0), diode ideality factor (𝑛), 𝑅𝑠, 

and 𝑅𝑠ℎ [90]. A wealth of analytical and numerical methods 

has been purposed to accurately estimate these parameters, 

depicting the vast attention received by these parameters [91]. 

Some authors use iterations in which 𝑅𝑠 and 𝑅𝑠ℎ are adjusted 

until satisfying the condition that the result from the model 

converges with the experimental data, indicating a strong 

predictive capability [92]. This may perhaps use initial 

guesses taken from slopes of the I–V curve at 𝑉𝑜𝑐  and 𝐼𝑠𝑐 , 

which are usually furnished in datasheets [93]. Experimental 

validation with mono-crystalline silicon (Mono-Si) modules 

has shown excellent correlation between simulated and 

measured performance, hence supporting the model's 

robustness [94]. The SDM can be categorized into five, four, 

or three-parameter variants, all based on a single exponential 

term [95]. The five-parameter model includes all standard 

parameters, while the four-parameter version assumes 

infinite shunt resistance (neglecting 𝑅𝑠ℎ) [96]. The three-

parameter model simplifies further by assuming both zero 

series resistance and infinite shunt resistance, eliminating 

both 𝑅𝑠 and 𝑅𝑠ℎ from consideration [97]. On the other hand, 

the DDM adds complexity with six unknown parameters and 

two exponential terms, allowing it to better capture 

recombination losses in some cases [98]. However, both 

SDM and DDM require detailed parameter knowledge that is 

often not provided in manufacturer datasheets, necessitating 

parameter extraction methods [99]. 

The fundamental Shockley equation describes the I–V 

characteristic of an ideal PVC, modeling it based on 

semiconductor diode theory [100]. This equation is expressed 

as [101], [102], [103], [104]: 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑑 = 𝐼𝑝ℎ − 𝐼0 [exp (
𝑞𝑉

a𝑘𝐵𝑇
) − 1]  (5) 

where 𝐼𝑝ℎ - is the photocurrent generated by light absorption, 

and 𝐼0 is the diode reverse saturation current. The term 𝐼𝑑 =

𝐼0 [exp (
𝑞𝑉

a𝑘𝐵𝑇
) − 1]- represents the current flowing through 

the diode under forward bias. Here, 𝑎 a denotes the diode 

ideality factor, which adjusts the exponential term to reflect 

recombination losses in real devices. The voltage 𝑉 is 

measured across the diode terminals, and the constants, 

𝑘𝐵=1.381×10-23 J/K (Boltzmann constant) and 𝑞 = 1.602×10-

19 C (electron charge), are fundamental physical constants. 

The temperature 𝑇 is the junction (operating) temperature, 

typically measured in Kelvin.  

When modules are connected in series, the output voltage 

increases proportionally to the number of series-connected 

cells 𝑁𝑠, while parallel connections increase the output 

current [105]. However, this ideal equation fails to capture 

the non-linear behavior of practical PV arrays, which are 

subject to resistive and thermal losses [106]. To accurately 

represent the terminal characteristics of a real PV module or 

array, two parasitic resistances must be introduced into the 

equation: the series resistance (𝑅𝑠) and the shunt (parallel) 

resistance (𝑅𝑠ℎ) [107]. These parameters reflect ohmic losses 

due to contacts, wires, and leakage currents across the 

junction, respectively [108]. The modified SDM equation 

becomes [109]: 

𝐼 = 𝐼𝑝ℎ − 𝐼0 [exp (
𝑞(𝑉 + 𝐼𝑅𝑠)

a𝑘𝐵𝑇
) − 1] −

𝑉 + 𝐼𝑅𝑠

𝑅𝑠ℎ

 (6) 

This extended form improves the accuracy of PV module 

simulations and is widely employed in numerical models and 

MPPT control strategies. The series (𝑅𝑠) and shunt (𝑅𝑠ℎ) 

resistances can be estimated from 𝑉–𝐼 curve as follows: 

𝑅𝑠 = −
𝑑𝑉

𝑑𝐼
−

𝑉𝑇𝑛

𝐼𝑠𝑐
    (𝐼 = 0, 𝑉 = 𝑉𝑜𝑐) (7) 

𝑅𝑠ℎ = −
𝑑𝑉

𝑑𝐼
 (𝐼 = 0, 𝑉 = 𝑉𝑜𝑐)  (8) 

The current passes the 𝑅𝑠ℎ is given as: 

𝐼𝑠ℎ =
𝑉+𝐼𝑅𝑠

𝑅𝑠ℎ
  (9) 

The DDM of a PVC extends the basic SDM by 

incorporating an additional diode to account for the 

recombination losses in the depletion region [110]. A more 

precise representation of the I–V chs., through this model is 

leveraged, and more particularly under the conditions of low 

SR [111]. The equation below describes the mathematical 

model of the PVC in relation to the DDM [112]: 

 𝐼 = 𝐼𝑝ℎ − 𝐼01 [𝑒𝑥𝑝 (
𝑞(𝑉+𝐼𝑅𝑠)

𝑎1𝑘𝐵𝑇
) − 1] −

𝐼02 [𝑒𝑥𝑝 (
𝑞(𝑉+𝐼𝑅𝑠)

𝑎2𝑘𝐵𝑇
) − 1] −

𝑉+𝐼𝑅𝑠

𝑅𝑠ℎ
  

(10) 

where; 𝑎1 and 𝑎2: Ideality factors of the 1st and 2nd diode. 

The recombination current is captured by this modeling 

scheme [113]. It is normally used in simulation applications 

of photovoltaic performance, as well as the determination of 

experimental parameters [114]. To further improve modeling 

accuracy for PVCs under varied conditions, the TDM 

introduces an additional diode to account for more complex 

recombination and diffusion mechanisms [115]. This model 

is especially useful for high-efficiency or concentrator PVCs 

where multiple recombination pathways are present [116]. 

The current in the TDM is: 

𝐼 = 𝐼𝑝ℎ − 𝐼01 [exp (
𝑞(𝑉+𝐼𝑅𝑠)

a1𝑘𝐵𝑇
) − 1] −

𝐼02 [exp (
𝑞(𝑉+𝐼𝑅𝑠)

a2𝑘𝐵𝑇
) − 1] − 𝐼03 [exp (

𝑞(𝑉+𝐼𝑅𝑠)

a3𝑘𝐵𝑇
) − 1] −

𝑉+𝐼𝑅𝑠

𝑅𝑠ℎ
  

(11) 
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Each diode in the model corresponds to a specific loss 

mechanism: diffusion, surface recombination, and space-

charge region recombination [117]. While more complex, 

this model yields better accuracy for PVCs operating in non-

ideal conditions such as low light or high temperatures [118]. 

However, because of the amplified number of parameters, the 

model requires sophisticated parameter extraction methods 

and fitting algorithms [119]. The models’ effectiveness 

mentioned above is assessed by objective functions, 

specifically those pertaining to RMSE. So, another important 

aspect of mathematical models of the PVCs are two statistical 

indicators, absolute error and the RMSE as defined by [120]: 

𝜀𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 = |𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝐼𝑚𝑜𝑑𝑒𝑙| (12) 

And 

𝑅𝑀𝑆𝐸 =
1

𝑁
∑(𝐼𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝐼𝑖,𝑚𝑜𝑑𝑒𝑙)

2
𝑁

𝑖=1

 (13) 

These two metrics are used to evaluate the degree of 

precision of the applied mathematical model and the 

correctness of the suggested technique [121]. A common 

statistic for evaluating the average difference between 

expected and actual I-V or P-V data in PVC models is RMSE. 

Better agreement and more model fidelity are indicated by a 

lower RMSE [122]. During parameter estimation for PV 

models—such as SD or DD equivalents—many studies use 

RMSE minimization to fit model outputs to experimental I–

V curves. Techniques like Archimedes optimization 

algorithm and other metaheuristic methods specifically 

optimize RMSE to improve parameter accuracy [123].  

RMSE is especially crucial when comparing models 

under non-ideal or partial shading scenarios. Lower RMSE 

values help identify which model (e.g., SD‑ vs DD) better 

captures the real device behavior [124]. Recent research 

critiques the conventional RMSE calculation methods and 

proposes more exact analytical solutions—such as those 

based on the Lambert W function—to more accurately 

evaluate modeling error for PVCs [125]. Different RMSE-

based fitting strategies—such as minimizing RMSE in (I) vs 

(V), or hybrid approaches (I&V)—can significantly impact 

the extracted parameters for parasitic resistances and diode 

ideality. These choices directly influence the RMSE and thus 

model reliability [126]. 

III. RESULTS AND DISCUSSION 

In this study, original simulations were carried out using 

MATLAB® 2024b to obtain the I–V and P–V chs., of PVCs 

under varying physical and environmental parameters. The 

analysis focuses on how changes in diode IF (a), 𝐼₀, 𝑅ₛ, and 

𝑅𝑠ℎ affect the electrical behavior of PVCs. Additionally, 

realistic environmental conditions—such as different 

temperature values and SR levels—were incorporated in the 

simulation. The numerical computations and visualizations 

were fully implemented by the author in MATLAB®, a 

proprietary software developed by MathWorks, widely used 

in engineering and scientific research for numerical modeling 

and simulation. MATLAB® offers a robust environment for 

technical computing and graphical visualization, which 

facilitated the generation of high-resolution output plots. 

Fig. 2 presents the simulated I–V and P–V chs., for 

varying values of I₀ and a, illustrating the effects of diode 

parameters on the PV module's output. The results are 

derived entirely from original code and parameter sets 

developed within this work, without reliance on external 

simulation templates or databases. 

 

Fig. 2. (a) I-V curves for variation in I0. (b) P-V curves for variation in I0. (c) 

I-V curves for parametric difference. (d) P-V curves for parametric 

difference 

I-V and P-V chs., under changing Io of the diode are 

exposed in Fig. 2(a) and Fig. 2(b). In this case, 𝐼0 changes 

with ten values of 1 nA, 2 nA, 3 nA, 4 nA, 5 nA, 6 nA, 7 nA, 

8 nA, 9 nA and 10 nA, respectively. Fig. 2 a and Fig. 2 b 

demonstrates how a greater diode Io results in a lower output 

power and voltage while maintaining the same current. The 

maximum value of the output power in this case is 

approximately 62.8 W/m2 (see Fig. 2(b)).  

Fig. 2(c) and d show I-V and P-V curves, respectively for 

ten different values of the ideality factor (IF) of the diode. 

The values used for the IF in this calculation are: 1, 1.05, 1.1, 

1.15, 1.2, 1.25, 1.3, 1.35, 1.4, and 1.45. The diode's IF 

typically ranges from 1 to 2. The simulation findings in Fig. 

2(c) and Fig. 2(d) show that the more the IF value was close 

to 2, the more power was extracted from the PVC. However, 

the simulation results with a=1.4 do not accurately represent 

the situation because the type of PVC with a high IF also 

exhibits high reverse Io, which would typically lead to low 

𝑉𝑜𝑐 , making it practically impossible to obtain such a high 

value of 𝑉𝑜𝑐 . Monocrystalline silicon (Si) is represented by 

diode IF values between 1.1 and 1.3. In its case the lines 

shown in the graph with the colors blue, pink, black, cyan and 

yellow correspond to PVCs made of monocrystalline silicon 

material.  

Values of a from 1.2 to 1.4 correspond to the material 

Polycrystalline Silicon (Si). So, the lines shown in the graph 

with the colors black, sky, yellow and the dashed lines in blue 
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and pink. Values of a from 1.1 to 1.2 correspond to the 

material CdTe (lines in blue, pink and black). To obtain the 

results shown in Fig. 2, we first determined the values of 

constants such as Boltzmann's constant, electron charge, 

nominal SC current (𝐼𝑠𝑐𝑛=8.1 A), nominal OC voltage 

constant (𝑉𝑜𝑐𝑛=33 V), Temperature current constant 

(𝐾𝑖=0.00322 K), No. of series connected PVCs (𝑁𝑠=55), 

temperature (25 oC). 

Fig. 3(a) show the output power in watts over time per 

hour for a PVC. To obtain this result, we performed a 

numerical simulation in MATLAB in the case where 

temperature and SR change over time according to a 

sinusoidal law to mimic the typical variation over a day. So, 

the time is simulated over 24 hours, a typically day. The SR 

during a day varies from 0 to 1000 W/m2 according to the 

law: 𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 = 1000 |sin (
𝜋𝑡

12
)| (Simple model: peak at 

noon). The temperature varies from 15 oC to 35 oC according 

to the sinusoidal law: 𝑇 = 25 +  10 sin (
𝜋𝑡

12
). To perform 

these calculations, the SDM was used. Fig. 3(b) illustrates the 

P–V chs., for ten different values of 𝑅𝑠. The results indicate 

that increasing 𝑅𝑠 alters the slope of the corresponding I–V 

curves, which shifts the location of the MPP. As 𝑅𝑠 increases, 

the output power of the PVC decreases due to higher resistive 

losses. The maximum output power obtained under the ideal 

case with 𝑅𝑠=0Ω is approximately 57 W, as shown in the plot. 

In a separate analysis, simulations were conducted for various 

𝑅𝑠ℎ values, specifically 0.05 Ω, 1 Ω, 10 Ω, 30 Ω, 70 Ω, and 

1000 Ω. It was observed that higher shunt resistance enhances 

the output power of the PV cell. When the 𝑅𝑠ℎ is low, the 

current decreases more abruptly near the short-circuit region, 

indicating greater leakage losses. The impact of 𝑅𝑠ℎ on both 

I–V and P–V chs., is shown in Fig. 3(c) and Fig. 3(d), 

respectively [14].  

 

Fig. 3. (a) Power output of a PVC over time. (b) P-V curves for different Rs 

(SDM). (c) I–V curves for parametric variation of Rsh (SDM). (d) P-V curves 

different Rsh (SDM) 

Fig. 4(a) and Fig. 4(b) show I-V and P-V chs., at different 

temperature (−20 ℃, −10 ℃ 0 ℃, 10 ℃, 20 ℃, 30 ℃, 

40 ℃, 50 ℃, and 60 ℃), respectively with fixed SR =1000 

W/m2. The PVC’s performance was noted to be best at 0 ℃. 

These findings indicate that PVC voltage exhibits a notable 

drop in value as temperature rises, whereas cell current 

likewise marginally increases. While the maximum power 

output drops, the Isc rises by a significantly smaller amount 

than the 𝑉𝑜𝑐  does. 

 

Fig. 4. (a) I–V chs., at different operating temperatures and constant SR 

based on the SDM. (b) P–V chs., at the same temperature variations and 

constant SR conditions with the SDM 

Fig. 5(a) illustrates the I–V chs., of the SD- PV model 

under varying levels of SR, while the PVC temperature 

remains fixed at T = 25 °C. Correspondingly, Fig. 5(b) 

displays the P–V curves under the same thermal condition. 

The simulation results indicate that as the SR increases, both 

the output current and the maximum power of the PVC 

exhibit a noticeable increase. However, the voltage shows 

only a slight enhancement. This trend arises because the 𝑉𝑜𝑐  

depends logarithmically on the SR, whereas the 𝐼𝑠𝑐  has a 

near-linear dependence on it. To perform this calculation, we 

used the SR values: 1500 W/m², 1800 W/m², 2000 W/m², 

2500 W/m², 3200 W/m², 3500 W/m², 4700 W/m², 4750 

W/m², 6000 W/m², 6030 W/m², 6500 W/m², and 6800 W/m². 

These SR values are typical for European countries such as 

Albania, Montenegro, Greece, etc. Using the same SR values, 

we have also performed calculations for the DDM and the I-

V and P-V chs., for this model are presented in Fig. 5(c) and 

Fig. 5(d), respectively. Also, the other parameters we used for 

this calculation are the same as those of the SDM, for 

example the temperature is constant 𝑇 = 25℃, 𝐼𝑠𝑐  = 5.1 A, 

𝑉𝑜𝑐  = 0.6 V, Number of series cells, 𝑁𝑠 = 1, 𝑅𝑠ℎ = 101 Ohm, 

and 𝑅𝑠 = 0.011 ohm. Comparing the result of Fig. 5(b) with 

that of Fig. 5(d) we see that for the same values of SR, the 

output power is lower in the DDM. For the DDM is used 

saturation current of first diode 𝐼01 = 𝐼𝑠𝑐/(exp (𝑉𝑜𝑐/(2𝑉𝑡))-1) 

and saturation current of second diode (lower) I02 = I01 / 100, 

where 𝑉𝑡 = 𝑘𝑇/𝑞 – is thermal voltage in V.  
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Fig. 5. (a) I-V chs., with SDM. (b) P-V chs., with SDM. (c) I-V chs., with 

DDM. (d) P-V chs., with DDM 

For the TDM we used the parameters: photocurrent under 

standard irradiance (1000 W/m²) is 𝐼𝑝ℎ0 = 5 A, reverse 

saturation current of diode 1, diode 2 and diode 3 is 𝐼𝑠1 =
𝐼𝑠2 = 𝐼𝑠3 = 10−10 A, thermal voltage in V at 300 K, typical 

value for silicon is 𝑉𝑡 = 0.026, 𝑅𝑠ℎ (Ohms), high value 

indicating small leakage is 𝑅𝑠ℎ = 1000, 𝑅𝑠 in Ohms, small 

value assuming low losses 𝑅𝑠 = 0.01, irradiance levels to 

simulate (in W/m²) are: 200 W/m², 400 W/m², 600 W/m², 800 

W/m², 1000 W/m². The results of the I-V and P-V curves for 

the TDM at different SR levels are presented in Fig. 6(a) and 

Fig. 6(b), respectively.  

 

Fig. 6. (a) I-V curve for the TDM at different SR levels. (b) P-V curve for 

the TDM at different SR levels 

PVCs can be bifacial and monofacial. Traditional PVCs 

that capture sunlight only from the front side are the 

monofacial PVCs. Monofacial PV panels are PVCs that 

generate electricity only from sunlight hitting the front side 

of the PVC. The back is usually covered with a dark material, 

meaning it does not contribute to power generation [127]. 

However, the PV panel can capture sunlight from both the 

front and back sides, increasing efficiency by using light 

reflected from various surfaces on the Earth or on the roofs 

of buildings. In this case, the solar cells are bifacial. Bifacial 

PVCs are designed to be hit by sunlight on both the front and 

back sides, thus increasing the total production of the 

necessary electrical energy [127], [128]. When compared to 

their monofacial counterparts, bifacial modules greatly 

increase energy yield by capturing light that is reflected from 

nearby surfaces and the dispersed components of sunlight. 

[129]. This characteristic is especially helpful in settings 

where ground reflectivity is high or in installations that use 

engineered ground cover to increase reflection [130]. 

Because bifacial cells are less expensive to produce than 

monofacial PVCs, PV module producers have started 

incorporating them into monofacial modules. This is 

primarily associated with a 65.3% decrease in the amount of 

back aluminum paste used, which results in a 0.5 cent/wafer 

cost reduction for M4 (161.7 × 161.7 mm2) size wafers. [131].  

Fig. 7 displays the I-V and P-V chs., of monofacial and 

bifacial PVCs under standard test conditions. To obtain these 

results, first defines voltage ranges and assumes different 

short-circuit currents for monofacial and bifacial PVCs. 

Define I-V chs., (using an ideal diode model approximation). 

The red curves represent the I-V and P-V chs., for monofacial 

PVCs and the blue curves represent the bifacial PVCs. This 

result helps visualize how bifacial PVCs perform better by 

capturing additional reflected light.  

 

Fig. 7. (a) I-V chs., of PVCs (monofacial and bifacial). (b) P-V chs., of PVCs 

(monofacial and bifacial)  

Fig. 8(a) show the power output of a PVC over time 

during a day (24 hours). From this result we see that the 

power output varies with time according to a sinusoidal law. 

The maximum output power in Watts is 300 W. Fig. 8(b) 

shows the energy of the PVC over time for 24 hours. Energy 

error over time for PVCs can be calculated. To make this 

calculation, the estimated energy output 𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 is 

compared with a measured actual energy 𝐸𝑎𝑐𝑡𝑢𝑎𝑙 . Energy 

error is 𝐸𝑒 = 𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝐸𝑎𝑐𝑡𝑢𝑎𝑙 . Fig. 8(c) shows energy 

output over time. The blue curve represents Estimated energy 

over time and red curve represents actual energy over time. 

Relative error of energy is 𝐸𝑟 = |
𝐸𝑒

𝐸𝑎𝑐𝑡𝑢𝑎𝑙
| 100% (Percentage 

Error). Fig. 8(d) shows relative error (%) over time.  

The absolute error of the electric current in amperes from 

the electric voltage in volts for the PVC can be graphically 

represented. Fig. 9 shows the absolute error for output I 

versus output V. 
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Fig. 8. (a) PVC power output. (b) PVC energy accumulation. (c) Energy 

output over time. (d) Energy error (relative error (%)) over time 

 

Fig. 9. Absolute error in I verses V for PVC 

Fig. 10(a) shows actual power and expected power output 

in Watts verses time in hours. We can also plot the power 

error for the PVC over time. This result is shown in Fig. 

10(b). The simulation time used in this calculation is 10 

hours. This error in power is calculated as the difference 

between actual and expected power. Fig. 10(c) shows the I-V 

characteristic for the measured current (blue curve) and for 

the simulated current (red dashed curve). Fig. 10(d) shows the 

P-V curves for the measured power (blue curve) and for the 

simulated power (red dashed curve). The RMSE calculated 

for the I-V chs., is 0.1308, while for the P-V chs., this error is 

calculated to be 0.6636.  

 

Fig. 10. (a) Actual and expected power output over time in hours. (b) Power 

error over time. (c) I-V curve (RMSE = 0.1308 A). (d) P-V curve (RMSE = 

0.6636 W) 

Fig. 11 shows absolute error I-V and P-V curve PVCs. To 

calculate and plot this error between the measured and 

simulated I-V and P-V curves of PVCs, we compare two sets 

of data: one from the measured data and one from the 

simulated model.  

 

Fig. 11. Absolute error I-V and P-V curve PVCs using MATLAB code. (a) 

I-V curve. (b) Absolute error in I-V. (c) P-V curve. (d) Absolute error in P-

V 

Finally, another important aspect of PVCs is the 

calculation of QE. This technique, which enables the amount 

of light transmission to particles to be measured as an 

indicator of the wavelength of hitting light, is crucial for 

researching PVCs. The amount of particles absorbed by the 

PVC to photons reflected on the cell at a specific wavelength 

is known as QE [132]. There are two types of QE: EQE and 

IQE [133]. Although IQE only takes into account the 

absorbed photons, EQE is defined as the number of electrons 

supplied to the external circuit per photon incident on the 

device; in other words, it is the ratio of the number of charge 

carriers collected by a device with the number of incident 

photons. This is why IQE is always greater than EQE [134]. 

The EQE can be written by formula:  

𝐸𝑄𝐸 =
ℎ𝑐

𝑛𝑞𝜆

𝑠(𝜆)

𝐴
 (14) 

where ℎ is Planck’s constant, 𝑐 is the light speed, 𝜆 is the 

wavelength in nm, 𝑠(𝜆) is the spectral sensitivity in AW−1, 

and 𝑛 is refraction index [132], [134], [135].  

Fig. 12 shows the EQE verses wavelength of solar 

radiation for different types of PVCs. Fig. 12(a) show the 

EQE verses wavelength for a Silicon PVC. Peak QE in the 

visible range is the maximum efficiency with which a given 

detector, such as a scientific camera sensor (which is made of 

silicon material), converts incident photons of visible light 

into electrons, i.e. into a measurable electrical signal. Fig. 

12(b) show the EQE verses wavelength for an organic PVC. 

The peak absorption range of a PVCs is the wavelength range 

over which it absorbs sunlight most effectively to be as 

efficient as possible. This is essential for converting solar 

energy into electricity efficiently. Fig. 12(c) show the EQE 

verses wavelength for a Perovskite PVC. In general, the High 
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QE region is the wavelength range over which a given 

detector has high quantum efficiency. For the Perovskite 

PVC this range is 450 - 750 nm (Fig. 12(c)). Fig. 12(d) show 

the EQE verses wavelength for a quantum dot PVC. Strong 

NIR absorption is the ability of a PVC to efficiently absorb 

sunlight in the Near Infrared (NIR) area of the 

electromagnetic spectrum. This spectrum is from 600 nm to 

950 nm for a quantum dot PVC.   

 

Fig. 12. (a) QE of a silicon PVC.  (b) QE of an organic PVC. (c) QE of a 

perovskite PVC. (d) QE of a quantum dot PVC 

IV. CONCLUSIONS 

The electrical behavior of PVCs is inherently nonlinear, 

making the I–V and P–V relationships uplifting in landscape. 

As such, they cannot be answered methodically in closed 

form. While analytical techniques offer exact solutions under 

idealized assumptions, they often fall short when applied to 

real-world PV models with multiple unknowns and non-ideal 

parameters. In contrast, numerical methods offer practical 

and efficient means to approximate the behavior of PVCs, 

particularly when dealing with nonlinearities. Generally, 

computer-based modeling is necessary for ray tracing 

simulation and performance optimization with MATLAB. 

The simulation results indicated a rise in SR with a constant 

temperature to enhance the Isc and power harvest, with very 

little impact on the voltage. On the contrary, increasing 

temperature would reduce voltage and power while leaving 

the current relatively unchanged. This again demonstrates 

that higher temperature leads to lower performance, 

highlighting the importance of thermal management.  

The ideality factor of the diode and I0 remains essential 

considerations. An increase in the ideality factor tends to 

increase the output power. In contrast, the diode saturation 

current has precisely the opposite effect-an increase in 

saturation current reduces the output power. Changes in shunt 

resistance also have a profound impact on performance: the 

lower the shunt resistance, the lower the output power, 

implying higher leakage loss within the PVC. 

Aside from the electrical characteristics, this study 

determined the EQE for different PV technologies. The 

aptitude of a PV to turn episode photons into electrons is 

quantified by the EQE, which may be assessed as a function 

of wavelength to obtain the spectral response of silicon PVCs 

and three other technologies: organic, perovskite, and 

quantum dot PVCs. A strong EQE response in the visible 

spectrum indicates good sunlight absorption, whereas EQE 

drops dramatically at certain wavelengths, which could 

indicate defects or poor design. These comparisons 

demonstrate the varying responses to different segments of 

the solar spectrum of different classes of PV materials. 

Characteristics in the EQE curves unique to a given cell are 

related to its structural and compositional design and thus 

make the analysis of EQE valuable in assessing and selecting 

materials to enhance solar conversion efficiency.  

Overall, the modeling, temperature control, and material 

optimization aspects of the design and evaluation of PV 

systems stand validated through this study. 
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