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Abstract—With the rise of e-Commerce and the evolution of 

robotic technologies, the focus on autonomous navigation within 

warehouse environments has increased. This study presents a 

simulation-based framework for path planning using Deep Q- 

Networks (DQN) in a warehouse environment modeled with 

moving obstacles. The proposed solution integrates a prebuilt 

map of the environment generated using Simultaneous 

Localization and Mapping (SLAM), which provides prior 

spatial knowledge of static obstacles. The reinforcement 

learning model is formulated with a state space derived from 

grayscale images that combine the static map generated by 

SLAM and dynamic obstacles in real time. The action space 

consists of four discrete movements for the agent. A reward 

shaping strategy includes a distance-based reward and penalty 

for collisions to encourage goal-reaching and discourage 

collisions. An epsilon-greedy policy with exponential decay is 

used to balance exploration and exploitation. This system was 

implemented in the Robot Operating System (ROS) and Gazebo 

simulation environment. The agent was trained over 1000 

episodes and metrics such as the number of actions executed to 

reach the goal and the cumulative reward per episode were 

analyzed to evaluate the convergence of the proposed solution. 

The results across two goal locations show that incorporating 

the SLAM map enhances learning stability, with the agent 

reaching a goal approximately 150 times, nearly double the 

success rate compared to the baseline without map information, 

which achieved only 80 successful episodes over the same 

number of episodes. This indicates faster convergence and 

reduced exploration overhead due to improved spatial 

awareness. 

Keywords—Deep Q-Networks; Path Planning; Simultaneous 

Localization and Mapping; Robot Operating System; Gazebo 

Simulation. 

I. INTRODUCTION 

The rapid expansion of e-commerce in the recent years 

has driven a greater demand for automation in warehouse 

workflows to ensure that operations are carried out efficiently 

and securely [1]–[3]. As a result, automation technologies 

have rapidly evolved, contributing to benefits such as 

improved operational output and reducing costs through 

minimal labor [4]–[6]. The shared working space between 

humans and robots in modern warehouses requires careful 

management to avoid disruptions and ensure a smooth 

workflow [7], [8]. Therefore, mobile robots must be equipped 

with real-time path planning mechanisms that allow them to 

navigate dynamic environments with humans and operate 

autonomously. 

Reinforcement Learning (RL) has emerged as a powerful 

technique for path planning due to its ability to learn from 

experiences. Deep Q-Networks (DQN), a RL algorithm, 

combines Q-learning with deep neural networks to approach 

problems with high-dimensional state spaces [9]. However, 

standard DQNs are known to have two main limitations. 

These are, the requirement for extensive exploration before 

meaningful learning occurs and slow convergence, especially 

in environments with large state spaces and sparse rewards 

[10], [11]. These limitations make standard DQNs less 

practical for real-world applications. 

In this work, we aim to address these shortcomings by 

providing prior spatial knowledge in the form of a pre-built 

static map generated using simultaneous localization and 

mapping (SLAM) to the learning agent. The core hypothesis 

is that a SLAM-derived map can significantly reduce 

exploration overhead and accelerate convergence by 

allowing the agent to begin training with a structured 

understanding of the environment. While SLAM itself is 

widely used in robotic navigation, integrating it with a 

learning-based planner has not been thoroughly explored. 

In this approach, the SLAM map is incorporated into the 

agent’s state representation as a grayscale image. This image 

will include information on the availability of free space and 

the positions of static obstacles, allowing the agent to learn 

optimal paths with less exploration. Additionally, the reward 

function also makes use of the map to encourage proximity-

based rewards which allows the DQN to associate 

environmental features more efficiently than in maples 

setups. 

The evaluation is conducted entirely in a simulated 

environment with just two static goal positions due to 

hardware constraints that restricted extended training across 

more goal scenarios. The generalizability of the findings to 
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real-world warehouse deployments and the system’s 

performance to highly dynamic warehouse layouts and varied 

lighting remain to be validated. Despite the constraints, the 

setup was sufficient to demonstrate the effect of using SLAM 

maps on training efficiency and convergence. The results 

demonstrate that agents trained with the SLAM map achieved 

nearly double the number of successful goal completions 

compared to those without map input, enabling a comparison 

between mapped and maples path planning using a DQN 

framework. 

The main contributions of this work are as follows; 

• A DQN based path planning framework is implemented 

and evaluated for dynamic warehouse environments 

using a pre-built map generated via GMapping SLAM. 

While GMapping is a standard component in the ROS 

Navigation Stack, this study shows how prior knowledge 

in the form of a static map can reduce the exploration 

overhead in RL. 

• A reward function tailored to indoor warehouse 

environments with dynamic agents is implemented, 

combining rewards for goal completion, proximity-based 

incentives, and collision penalties to guide the learning 

agent. 

An experimental comparison of learning performance 

with and without SLAM map support in a simulated 

warehouse setting. 

II. EASE OF USE 

A. Global and Local Planners 

Path planning was categorized into two main types, global 

path planning and local path planning by Chik et al. [12]. 

Global path planners, such as Dijkstra [13], [14], and A* 

[15]–[18], compute the optimum route in static environments. 

Meanwhile, local path planners focus on avoiding dynamic 

hazards by allowing the robot to observe the environment and 

process real-time sensor inputs. This is also referred to as 

offline or online, respectively. Local planners include 

artificial potential field (APF), dynamic window approach 

(DWA), and reinforcement learning algorithms (RL). APF 

works with attraction and repelling theory, where it is 

attracted to the goal and repelled by an obstacle [19]–[21]. 

However, this method suffers from the local minima 

problem. 

The DWA approach includes a set of feasible velocities. 

The algorithm selects a velocity from this set in the dynamic 

window and guides the agent to its goal. Although the agent 

reaches the goal faster using this approach, this method may 

fail in environments with high uncertainty or dynamic 

changes [22]–[25]. 

RL has emerged as a robust alternative for handling 

dynamic obstacles. The agent receives feedback for every 

action it performs. This feedback enables the robot to 

continuously learn which actions result in successful 

outcomes. Each positive action is rewarded while each 

negative or suboptimal actions are given a penalty [26]–[29]. 

Among the many RL techniques, Q- learning is one of the 

most studied algorithms. This method uses a Q-table for Q-

values representation and hence is infeasible for high-

dimensional states [30]–[32]. DQN was introduced in [33] to 

address this limitation by integrating artificial neural 

networks (ANN) with Q-learning. This could approximate Q- 

values with the use of the neural networks [34]–[36]. 

However, DQN suffers from overestimated Q-values and 

slow convergence [37]. To mitigate these problems, several 

DQN variants were introduced. Lei proposed Double DQN 

(DDQN) in [38] to overcome the problem of overestimation 

without any extra computational cost by decoupling action 

selection from value estimation [39]–[42]. Dueling DQN 

(D3QN) introduced in [43] enables the agent to estimate the 

more valuable state making it unnecessary to evaluate the 

impact of each action in all states. This accelerates the 

learning process and hence allows faster convergence [44]–

[46]. Although the efficiency of this network is high, its 

implementation introduces additional complexity. Proximal 

Policy Optimization (PPO) offers training stability by using 

clipped objective functions and adaptive updates. PPO is 

suitable for complex navigation tasks due to its balance 

between sample efficiency and robustness [47]–[49]. 

Shuhuan Wen et al used D3QN together with active SLAM 

in [50] to improve navigation by creating the map of the 

environment using SLAM. However, this was limited to a 

static environment and was a highly complex algorithm. 

While these studies highlight the benefits of integrating 

SLAM with RL [51]–[53], most focus on mapping tasks 

rather than improving DQN convergence. 

B. Research Gap 

These limitations highlight a research problem where 

existing RL-based path planning solutions either require 

excessive exploration, suffer from slow convergence, or are 

highly complex algorithms that have not been extensively 

tested in dynamic warehouse environments with realistic 

constraints. 

Our work builds on these efforts by demonstrating how 

incorporating a static SLAM-generated map as prior 

knowledge can reduce exploration overhead in a DQN-based 

navigation setup. This is evaluated in a dynamic warehouse 

simulation using ROS and Gazebo, with dynamic obstacles 

and two goal scenarios with a reward function specific for 

indoor environments. 

III. PREPARE YOUR PAPER BEFORE STYLING 

Using DQN, this research establishes a baseline for 

reinforcement learning with SLAM-generated maps. DQNs 

utilize a replay buffer to store their past experiences, allowing 

the agent to learn more effectively by sampling these [54]. 

Another notable advantage is that they can process high-

dimensional inputs, including sensor data such as LiDAR 

[55]. This capability makes DQNs valuable in practical 

robotic systems. However, DQNs require significant 

computational power and often offer slow convergence. To 

mitigate this, the proposed solution incorporates a map 

generated via SLAM to allow the agent to navigate with prior 

spatial knowledge and avoid unnecessary exploration. 

A. Scope and Assumptions 

The objective of this study is to assess whether prior 

spatial knowledge via SLAM mapping can reduce 
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exploration overhead in DQN-based learning. The simulation 

environment was selected to represent a structured warehouse 

scenario and includes dynamic agents but assumes a fixed 

static layout. Due to resource constraints, training was capped 

at 1000 episodes, which was empirically sufficient for 

convergence. This scope enables evaluation of map-assisted 

learning in a semi-realistic, reproducible context. 

B. ROS: Gazebo Warehouse Simulation 

ROS provides a collection of tools and libraries that are 

used in research and robust robot applications. Gazebo is a 

3D robotic simulator that works alongside ROS, offering a 

versatile platform for testing and developing robot 

applications under realistic conditions [56], [57]. This 

solution was implemented and evaluated within the Gazebo 

simulation environment. For this study, a warehouse model 

was adopted from [58]. This environment offers a realistic 

warehouse setup, incorporating elements like shelving units, 

partitions, and dynamic elements. The robotic agent 

employed in this study is a Turtlebot3 (burger model) 

equipped with a 2D LiDAR sensor for environmental 

perception. 

C. Simultaneous Localization and Mapping (SLAM) 

SLAM is a primary technique in mobile robots that allows 

the robot to construct a map of its environment while 

simultaneously estimating its location within that space [59], 

[60]. In this study, SLAM is implemented by using the 

LiDAR on the Turtlebot3 robot. Fig. 1 shows the portable 

gray map as a result of SLAM. The white regions in Fig. 1 

indicate the free navigable space. The gray area denotes the 

restricted area the robot should avoid. The black outlines 

correspond to the fixed static obstacles. To prepare this image 

in a format that can be processed by the DQN algorithm, the 

original map (.pgm) file of size 480×480 is first resized and 

then normalized to form a 200×200 grayscale image. This 

resized image is then fed into the neural network as input to 

the DQN. 

 

Fig. 1. Map of the warehouse created using 2D lidar using GMapping SLAM 

algorithm 

D. Coordinate System and Robot Localization 

To accurately interpret the occupancy grid map generated 

by SLAM and enable precise navigation, it is essential to 

establish a correspondence between the pixel-based map 

representation and real-world dimensions. Each pixel on the 

occupancy grid corresponds to a fixed real-world distance. 

The (1) shows the resolution of the SLAM-generated map. 

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  0.05 𝑚/𝑝𝑖𝑥𝑒𝑙 (1) 

The total width and height of the occupancy grid are 480 

pixels, which is translated to real world dimensions using (2), 

𝑅_𝐷 =  𝑁_𝑃 ×  𝑅𝑆 (2) 

Where, 𝑅_𝐷 is the real-world dimensions of the warehouse, 

𝑁_𝑃 is the number of pixels on the grid and RS is the 

resolution. Thus, the warehouse spans 24m×24m in real-

world coordinates. The real-world coordinate corresponding 

to the bottom-left corner of the warehouse map is set at (–12, 

–12) meters. Therefore, the map can be interpreted as shown 

in Fig. 1. 

Adaptive monte carlo localization (AMCL) was utilized 

to estimate the location of the agent in real-time. AMCL is a 

probabilistic localization algorithm that enables the robot to 

continuously estimate its pose in a known space using 

sensory data such as laser scans and odometry [61]–[63]. 

While the map server gives a static reference to localize the 

robot, AMCL actively updates the robot’s estimated position 

within it. This ensures that, as the robot moves and senses the 

environment via LiDAR and odometry, its current position 

within the static map is continuously updated and corrected 

[63], [64]. Accurate localization is a critical requirement in 

autonomous navigation. Inaccurate position estimation will 

lead to ineffective decision- making [65], [66]. 

E. Interpreting LiDAR Data and Detecting Obstacles 

Sensor readings are initially provided in polar form 

consisting of a distance and an angle relative to the robot’s 

frame. These coordinates are transformed into Cartesian form 

for a grid-based representation. The ranges array containing 

the distance values has 720 elements. This suggests that the 

angle between consecutive readings is 0.25° (180/720 = 

0.25). By applying trigonometric transformations to the 

measured angles and distances and using the angle increment 

from the LaserScan message, corresponding Cartesian (x, y) 

coordinate is calculated. The Cartesian coordinates 

representing the obstacles are scaled appropriately and 

mapped onto the 200×200 occupancy grid. Within the grid, 

the unoccupied space is denoted by 0, while the dynamic 

obstacles are denoted by 255. Overlaying the static map 

derived from SLAM with the dynamic obstacle map, a 

complete snapshot of the environment is created at that time. 

Every time the agent executes an action, this composite map 

will be updated and will serve as the current state input for 

the RL model. 

F. Deep Q-Network 

Mnih et al. introduced the concept of Deep Q-Leaning in 

[33]. This leverages deep neural networks to approximate Q 

val- ues in high-dimensional state spaces. In the proposed 

solution, the input to the Q-network is a combined occupancy 

map that represents static obstacles (from SLAM) and 

dynamic obstacles (from real-time LiDAR data). The DQN 

architecture consists of three primary components. These 
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include a convolutional neural network (CNN), a replay 

buffer, and a target network. 

1) Convolutional Neural Networks: CNNs are widely 

used in tasks involving image recognition and visual data 

processing [67]–[69]. In this study, a grayscale image of the 

map is used as the input, and hence a CNN with two 

convolutional layers is used to approximate the Q values. The 

first layer applies 32 filters of size 8×8 and a stride of 4 

followed by a second layer consisting of 64 filters of size 4×4 

and a stride of 2. This second layer captures additional 

abstract features and refines the output from the initial layer. 

Both layers use the Rectified Linear Unit (ReLu) for the 

activation function. The input to the DQN is the 200×200 

grayscale image representing the presence of both static and 

dynamic obstacles, which also serves as the current state of 

the agent. The output layer of the network is fully connected 

and consists of neurons equal to the size of the action space. 

Each neuron outputs a Q-value for one possible action in the 

given state. The agent selects its next action depending on 

these Q-values. In this implementation, the action space 

includes four actions. Table I shows the actions allowed by 

the agent. 

TABLE I. AGENT ACTIONS AND CORRESPONDING MOVEMENTS 

Action Description 
Move Forward Moves forward at a speed of 0.5 m/s 

Stop Sets both linear and angular speed to 0 
Turn Right Turns right by a random angle between 0° - 90° 
Turn Left Turns left by a random angle between 0° - 90° 

 

G. Replay Buffer 

The primary role of the replay buffer is to store the 

experiences/interactions of the agent with the environment 

enabling more accurate policy learning. Following an action, 

the experience is added to the buffer in the form of a tuple, (s, 

a, r, s’, t) which includes the current state, chosen action, 

reward received, next state and termination flag, respectively 

[70], [71]. At each training step, a random set of past 

experiences of a predetermined size is sampled to mitigate 

temporal correlations in the data, enabling the agent to learn 

from a diverse set of previous experiences, stabilizing 

training [72], [73]. The replay buffer has limited capacity. 

Therefore, as experiences accumulate, the older experiences 

are overwritten with more refined experiences. This 

implementation employed a replay buffer with a capacity of 

holding 1000 experiences, which pro- vided a good trade-off 

between learning diversity and memory efficiency within the 

constraints of the simulation environment. A standard 

sampling batch size of 32 was used to balance convergence 

speed and stability. 

H. Target Network 

In addition to the main Q-network, a secondary target 

network is maintained to ensure stability in the target Q- 

value throughout the training phase. This network is updated 

at regular intervals [74]–[76]. Specifically, every 10 

episodes, this network is updated with the primary network’s 

weights to stabilize the training process. This frequency was 

chosen because more frequent updates could cause 

oscillations in Q- values, while less frequent updates can slow 

convergence within constraints of the simulation 

environment. The (3) [77], [78] shows how the target 𝑄 

values are calculated using the Bellman equation, 

𝑄(𝑠, 𝑎)  =  𝑟 +  (1 −  𝑡)  ·  𝛾 ·  𝑚𝑎𝑥 𝑄(𝑠′, 𝑎′) (3) 

where, when the agent performs an action 𝑎 in state 𝑠 and 

receives a reward 𝑟, the corresponding 𝑄 value, 𝑄(𝑠, 𝑎) for 

that state-action pair, reflects both the current reward 𝑟 and 

the anticipated future reward in the subsequent state 𝑠’. 
Therefore, if an episode terminates and 𝑡 = 1, the target 𝑄 

value equals the immediate reward since no further state is 

encountered. Here, the discount factor, 𝛾=0.99, controls the 

agent’s emphasis on future rewards relative to immediate 

ones. Meanwhile, 𝑚𝑎𝑥𝑄(𝑠′, 𝑎′) denotes the highest predicted 

𝑄-value for the next states estimated by the target network in 

the batch sampled. This value corresponds to the action that 

the agent identified as the one that will result in the highest 

future reward 

1) Loss Function: To calculate the discrepancy 

between the predicted and target 𝑄-values, the Huber loss 

function is used in this solution. This function combines the 

characteristics of the mean squared error (MSE) and the mean 

absolute error (MAE). It’s low sensitivity to outliers makes it 

well-suited for stabilizing DQN models [79], [80]. The Huber 

loss function is defined as in (4) [81], 

𝐿𝛿(𝑦, 𝑄(𝑠, 𝑎)) = {
𝛿|𝑦−𝑄(𝑠,𝑎)|−

1
2

𝛿2              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 

1
2

(𝑦−𝑄(𝑠,𝑎))
2

                      𝑓𝑜𝑟 |𝑦−𝑄(𝑠,𝑎)|≤𝛿
 (4) 

Where y denotes the target 𝑄 values, while 𝑄(𝑠, 𝑎) represents 

the 𝑄 value predicted by the main network. The loss is 

minimized using the Adam optimizer with a learning rate of 

1e-4. This learning rate is standard in DQN implementations 

and provides stable convergence for our solution without 

causing gradient instability or stagnation [82], [83].  

2) Epsilon-Greedy Policy: This approach is used to 

maintain the balance between exploratory behavior and the 

exploitation of known actions during action selection. A 

random number is generated at each step. If this number is 

less than the current epsilon value (𝜖), a random action is 

selected (exploration). Otherwise, the action with the highest 

𝑄-value is chosen (exploitation) [84]–[86]. At the beginning 

of training, to understand the environment, the agent 

prioritizes exploration. As learning progresses, the agent 

relies on exploitation to exploit what it has learned. In this 

implementation, the epsilon is initially set to 0.999 and 

reduces exponentially to a lower limit of 0.01. The values 

were selected to prevent premature convergence and to 

accommodate the limited number of training episodes in this 

study. Once this minimum is reached, it is maintained to 

ensure that the agent continues to explore occasionally, even 

if the likelihood is low. 

3) Reward Function: The reward function is designed 

to encourage the agent to take optimal path (least steps) to the 

goal by rewarding and discourage collisions and unsafe 

behavior by penalizing. In this solution, the reward function 

is designed such that, for each action taken, the agent receives 

a scalar reward based on one of three conditions: reaching the 

goal, approaching the goal, or colliding with an obstacle. 
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• Goal Reward: awarded when the agent is near the goal 

within a radius of 0.4m. 

• Distance-based reward: awarded when the agent moves 

closer to the goal but has not reached it. The reward is 

scaled by how close the agent is to the goal. 

• Collision penalty: awarded when the agent gets within a 

0.3m radius of an obstacle. 

These components are mutually exclusive, and only one 

reward type is applied per step. The reward for reaching the 

target is defined as shown in (5), 

𝐺𝑅 =  𝑀𝐺𝑅 × 1 
𝑆_𝑇

𝑀_𝑆
+  100 

(5) 

where 𝐺𝑅 is the reward for reaching the goal threshold, 

𝑀𝐺𝑅=500, the maximum reward for reaching the goal, 𝑆_𝑇 

is the number of steps from the initial position to the goal, and 

𝑀_𝑆=100, the maximum allowed steps. The reward is 

inversely scaled based on the step count used to achieve the 

target. This function encourages the agent to reduce the step 

count to the goal and promote efficiency in path selection. An 

offset of value of 100 ensures that the agent will receive a 

non-zero reward even when the target is achieved in the last 

step (100th). 

If the goal has not yet been reached, the agent receives a 

distance-based reward that is defined as in (6) 

𝑅 = 100 × (1 − 𝑁_𝐷) × 1
𝑆_𝑇

𝑀_𝑆
 

(6) 

where 𝑁_𝐷 is the normalized distance to the goal, 

𝑁𝐷 =
𝐷𝑖𝑠𝑡

𝑚𝑎𝑥 (𝐷𝑖𝑠𝑡)
 (7) 

Here, 𝑅 is the reward, 𝐷𝑖𝑠𝑡 is the current Euclidean distance 
to the goal, and 𝑚𝑎𝑥(𝐷𝑖𝑠𝑡)=12 m is the maximum distance 
in the environment. 

A penalty of –1 is awarded when the agent comes within 

0.3m of a static or dynamic obstacle, indicating a collision. 

This negative reward allows the agent learn to avoid 

unsafe/incorrect interactions with its environment. 

The threshold values and reward functions were tuned 

empirically to achieve stable convergence in simulation and 

guided by the standard RL reward principles of goal 

proximity, efficiency, and penalty for wrong behavior of the 

agent. 

I. An Episode 

At the beginning of each episode, the agent is placed in 

the fixed initial position (0, 0) with a default orientation. The 

consistent initialization was intended to simplify early 

convergence and enable clearer comparisons between 

episodes and between the two scenarios (with and without 

map). The agent then begins selecting actions using the 𝜖-

greedy strategy described previously. The agent is allowed to 

execute a maximum of 100 actions in each episode.  

An episode terminates earlier if any of the following criteria 

are met: 

• Goal Reached: If the agent successfully reaches the target 

within 100 actions or fewer, the episode terminates. 

• Collision: In the event of a collision due to an action 

taken, the agent is penalized with a negative reward, and 

the episode terminates immediately. 

• Action limit exceeds: If the agent reaches a maximum of 

100 actions and has neither reached the goal nor 

encountered a collision, the episode ends. 
 

Algorithm 1. DQN with SLAM Map Integration 
1: Initialize: replay buffer, Q-network Q, target  

 network Qtarget, exploration rate ϵ 

2: for each episode do 

3:  Initialize robot position and environment 

4: static map ← preprocess(SLAM occupancy grid) 

5: for each step in the episode do 

6: dynamic map ← process lidar() 

7: combined map ← max(static map, dynamic map) 

8: s ← combined map 

9: // Epsilon-greedy action selection 

10: With probability ϵ, select a random action a 

11: Else, a ← arg maxa′ Q(s, a′) 

12: Execute action a 

13: reward r ← reward function 

14: Get next state s′, and termination flag t 

15: Store (s, a, r, s′, t) in replay buffer 

16: Sample a mini-batch from replay buffer 

17: target y ← Equation(3) 

18: Update Q 

19: s ← s′ 

20: Every 10 episodes, update target network: Qtarget ←Q 

21: Decay ϵ 

22: if goal reached or collision or max steps then 

23: break 

24: end if 

25: end for 

26: end for 

 

The algorithm 1 summarizes how the SLAM is integrated 

with the DQN in this solution and how each episode works. 

Fig. 2 visualizes a high-level workflow of the proposed 

solution using a flowchart. This shows what happens in a 

single episode. 

During this training stage, a basic curriculum learning 

strategy was used to stabilize training [87], [88]. Here, the 

initial goal was placed closer to the agent’s initial position. 

Once the agent consistently reached this goal five times, a 

more distant goal was introduced. This incremental learning 

strategy allowed the agent to first master simpler navigation 

tasks before attempting more complex ones. The threshold of 

using five successes was chosen to maintain a balance 

between the time taken to train and the learning confidence. 

A lower threshold resulted in the agent progressing on the 

basis of coincidental success rather than consistently 

learning. Meanwhile, a higher threshold risked overfitting to 

the current goal and significantly increased training time, 

which is a critical factor given our computational constraints. 

Fig. 3 shows the target position as a red sphere and the 

agent as the base link as visualized in Rviz. The episodes, the 

cumulative reward, the average reward, the maximum loss, 

the average loss, the target coordinate, the goal reach count 

was recorded in a CSV file. 
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Fig. 2. Flowchart: A single episode 

 

Fig. 3. Rviz Visualization of the agent navigating in the warehouse 

J. Comparative Evaluation 

To evaluate the impact of integrating a SLAM-generated 

map, a comparative analysis was conducted between two 

DQN models, one where the map was provided and other 

trained without any prior knowledge of the static layout. The 

results showed that the agent reached nearly twice as many 

goals (150 vs. 80) over the same training period, 

demonstrating faster convergence. The results will be 

discussed further in the next chapter. This comparative result 

provides preliminary evidence of the contribution of spatial 

priors. In future work, a detailed ablation analysis is expected 

to be performed to further quantify individual contributions 

to learning performance. 

IV. EXPERIMENTAL CONSTRAINTS AND LIMITATIONS 

The implementation of this solution requires a large 

amount of computational power and memory for several 

reasons. These include processing high-resolution maps in 

Gazebo, processing a large amount of LiDAR data, high-

dimensional input states (200×200), processing a large 

amount of batch data during training from the replay buffer, 

and the replay buffer itself consumes a large amount of 

memory. Simultaneously running the simulation, neural 

network training, and ROS processes require a high-

performance CPU and a high amount of RAM to maximize 

performance [89], [90]. A 64 GB RAM and a 12- core CPU 

might allow the system to run efficiently. Due to these 

computational constraints, the model was trained for 1000 

episodes, and the experimental setup was restricted to a single 

warehouse layout with two goals. Although this limited the 

generalizability of the findings, the inclusion of both static 

and dynamic obstacles in this layout provided insights to the 

robot’s learning behavior in realistic environments. 

V. RESULTS AND DISCUSSION 

Following the method discussed above, the model was 

trained for 1000 episodes. Using these results, we aim to 

assess if integrating a pre-built SLAM map improves 

convergence compared to a baseline of when a map is not 

used together with DQN to navigate to the goal. 

A. Constructing the Slam Map and Localizing 

Fig. 1 shows the map constructed using the GMapping 

SLAM algorithm and the LiDAR sensor. The odometry 

information gives the agent’s current pose relative to the 

starting point at (0,0), enabling the agent to determine its 

location on the map. 

B. Training the DQN Model 

The DQN agent underwent training for a total of 1000 

episodes, and the training parameters used are shown in  

Table II. The hyperparameter value choices and their 

empirical rationale are explained in Section 3. 

TABLE II. PARAMETERS AND THEIR CORRESPONDING VALUES 

Parameter Value 
Maximum number of steps/actions per episode 100 
Initial epsilon 0.999 
Minimum epsilon 0.01 
Discount Factor 0.99 
Learning rate 1e-4 
Size of replay buffer 1000 
Sample batch size 32 
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The learning process was evaluated based on two primary 

metrics: 

• Evaluating step count to goal during successful episodes 

• Evaluating cumulative rewards over total training 

episodes 

1) Measuring steps taken to reach to goal: 

This metric can be used to evaluate the training process. 

This offers a reliable indicator of the agent’s learning 

progress during training. Fig. 4 generated using matplotlib 

presents the number of steps taken to reach the goal plotted 

against the corresponding successful episodes. In the initial 

training phase, the agent has very limited knowledge of the 

environment in which it is navigating. There- fore, the agent 

explores the environment by randomly executing actions. As 

a result, the agent will require more actions/steps to reach the 

target early on. As learning progresses, the agent becomes 

familiar with the environment, hence learning to take more 

purposeful actions. 

This results in a reduced number of actions taken by the 

agent to reach the target. This deceasing trend in the number 

of steps taken indicates that the policy learned by the agent is 

becoming more efficient and optimized. During the training 

period, the agent successfully reached the target 

approximately 150 times. Initially, the agent required around 

65 steps (high number) to reach the goal, reflecting its lack of 

environmental knowledge. The fluctuations seen following 

the sudden decrease suggest that the agent is continuing to 

explore, leading the agent to occasionally select random 

actions. The plot illustrates that the agent consistently 

reached the 1st goal after about 101 successful attempts. A 

new goal is introduced only after the agent has reached the 

previous goal consecutively five times. This is to ensure that 

the behavior has been sufficiently learned. By the time the 

agent had mastered the first goal, it only took approximately 

25 steps to reach that goal. 

A sharp increase in the step count is seen around the 101st 
successful episode, corresponding to the introduction of the 

second goal. Similarly to the initial target, the agent begins 

with a larger step count and gradually reduces as it improves 

the policy. Fluctuations in the step count have reduced over 

time as the agent progresses to the second goal, indicating the 

shift from exploration to exploitation. This behavior suggests 

that the agent is refining its policy and learning the optimal 

path. With extended training, the agent will also learn to reach 

the 2nd goal using the optimal path. Therefore, Fig. 4 is an 

effective representation of the agent’s learning trajectory. 

2) Baseline comparison: DQN with vs. without SLAM Map: 

To assess the impact of prior spatial knowledge on 

learning efficiency, the same DQN model was trained 

without access to the SLAM-generated map. Fig. 5 shows the 

steps taken by the robot to reach the goal when the map is not 

provided. In this plot, it can be seen that there were only about 

80 successful episodes, while there were about 150 when the 

map was used. It can also be seen that the agent struggled to 

learn a coherent path-planning strategy, as it did not reliably 

reach even the first goal during the course of training, 

exhibiting slow convergence. This comparative experiment 

further validates the use of the SLAM map to improve 

convergence by accelerating the learning process. The results 

of the comparative experiment, with and without the SLAM 

map are presented in Table III. 

TABLE III. COMPARISON OF DQN PERFORMANCE WITH AND WITHOUT 

SLAM MAP 

Metric 
With SLAM  

Map 

Without  

Map 

Average steps to reach goal 27.6 58.5 

Total successful episodes (out of 1000) 150 85 

Average cumulative reward 1700 3000 

Average collisions per 100 episodes ∼3.4 ∼17 
 

The results for the Average cumulative reward and 

Average collisions per 100 episodes are explained in the 

’Measuring Cumulative Reward’ section. 

3) Epsilon Decay plot:  

Fig. 6 illustrates the exponential decay of the epsilon 

value during training. This decay follows the ϵ-Greedy Policy 

discussed in Section III, allowing more frequently 

exploration initially and gradually allow more exploitation as 

learning progresses by relying on the predictions of the Q-

network. This decrease also accounts for the reduced 

fluctuations in Fig. 4, as the agent begins to favor more 

consistent, reward-driven behavior. 

4) Measuring Cumulative Reward:  

Fig. 7 shows the cumulative reward plotted against the 

number of episodes. In the proposed solution, the agent 

receives a significant reward upon reaching a goal, inversely 

scaled by the number of actions required to reach it, as shown 

in the (5). Additionally, the agent is also incrementally 

rewarded when it moves closer to the goal, as seen in the (6). 

As a result of this stepwise distance- based reward, episodes 

in which more steps are involved tend to accumulate a higher 

total reward. Therefore, the cumulative reward is greater in 

the initial training episodes when the agent takes longer paths 

to reach the goal. As training progresses, the agent 

understands to follow the optimal path, reducing the step 

count, and hence the stepwise intermediate reward. This 

results in a decrease in the cumulative reward, suggesting that 

the learned policy is becoming more efficient. The noticeable 

fluctuations in the beginning of the plot, likely caused by 

frequent collisions during initial exploration, become less 

prominent towards the end, indicating that the agent is 

learning progressively to avoid collisions. Comparing the 

scenarios, with and without the SLAM generated map, the 

average cumulative reward is higher in the without-map setup 

as a consequence of the agent taking more steps per episode 

to reach the goal. In contrast, with the SLAM map provided, 

the agent learns a more optimal policy earlier with the prior 

spatial knowledge and takes fewer steps, resulting in lower 

accumulated intermediate rewards per episode. This explains 

the values shown in Table III. 

The downward spikes in Fig. 7 represent collisions. As 

soon as a collision occurs, the reward becomes minimal. With 

the map incorporated, the collisions gradually decrease to an 

average of 3.4 per 100 episodes within the training period. 
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Fig. 4. Number of steps to reach the goal per successful episode (with SLAM map) 

 

Fig. 5. Number of steps to reach the goal per successful episode (no SLAM map) 

 

Fig. 6. Epsilon decay 

 

Fig. 7. Cumulative reward 

 

C. Using the Trained Model 

The trained DQN model was deployed in the same 

warehouse simulation to evaluate its real-time navigation 

behavior. The agent successfully learned to navigate to the 

first goal (5, -0.6). The action selection process during 

deployment followed the learned policy without exploration, 

that is, the action with the maximum predicted Q-value was 

selected at each step. Fig. 8 shows how the agent successfully 

reached the first target. 

For instance, Moraes et al. [42] evaluated both DQN and 

DDQN with only low-dimensional Laser and goal-relative 

inputs and found that DDQN improved success rates but still 

took long to converge and stabilize. In contrast, our SLAM- 

integrated DQN achieved nearly double the number of 

successful goal completions (150 vs. 80) in the same training 

window, with a 40% reduction in steps to reach the goal. 

The main findings of this study demonstrate that 

integrating SLAM-generated static maps with Deep Q-

Networks significantly improves convergence speed and 

navigation efficiency in static warehouse environments with 

dynamic obstacles. The agent using prior spatial knowledge 

achieved nearly twice the success rate compared to the 

baseline DQN without map input. This study demonstrates 

that providing structured spatial context can enable faster 

learning in complex navigation tasks, making such methods 

more viable for real-time or resource-constrained robotic 

deployments. While the study shows promising results, 

limitations include the restricted number of goal positions 

and lack of dynamic layout testing, which limit the 

generalizability of the results and can be addressed in future 

work to strengthen the reproducibility and scalability of the 

proposed method. 

 

Fig. 8. Agent successfully reaching first goal 
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VI. CONCLUSION AND FUTURE WORK 

This study presented a Deep Q-Network (DQN)-based 

path planning framework for autonomous warehouse robots, 

integrating a SLAM-generated map to provide prior spatial 

knowledge aiming to reduce exploration overhead and 

contribute to more efficient policy learning. 

The proposed approach was implemented and analyzed in 

a simulated Gazebo warehouse environment consisting of 

static and dynamic obstacles.  

The research contribution lies in demonstrating that 

incorporating a SLAM-derived static map as a spatial prior 

converges faster to an optimal navigation policy by reducing 

exploration overhead while maintaining performance in 

dynamic conditions. 

The scope of evaluation was limited to a relatively short 

training duration with two goal locations due to 

computational resource constraints affecting the 

generalizability of findings. Although a complete 

hyperparameter sensitivity analysis was beyond the scope of 

the current study due to computational constraints, we 

recognize this as an important direction for future work to 

further enhance reproducibility and robustness. 

Furthermore, while the SLAM map helps reduce 

exploration in relatively stable environments, the system may 

under-perform if the environment diverges significantly from 

the static map, for example, in high-density human- robot 

interaction zones or environments with sudden structural 

changes. Real-world deployment would also require 

addressing the computational demands of combining high-

dimensional SLAM maps with deep learning in real-time 

systems. 

However, our study demonstrates promising results to im- 

prove the stability of policy learning in constrained 

warehouse settings using prior spatial knowledge. This 

method contributes new insights and highlights the potential 

of map-assisted RL in robotics. 

Future work will include extending the model to handle 

multiple warehouse layouts and dynamic goal locations, 

incorporating domain randomization to improve robustness. 
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