
Journal of Robotics and Control (JRC)

Volume 6, Issue 5, 2025

ISSN: 2715-5072, DOI: 10.18196/jrc.v6i5.27579 2284

 Journal Web site: http://journal.umy.ac.id/index.php/jrc Journal Email: jrc@umy.ac.id

Deep Q-Network-Based Path Planning in a

Simulated Warehouse Environment with SLAM

Map Integration and Dynamic Obstacles

Himandi Medagangoda 1*, Nilusha Jayawickrama 2, Rajitha de Silva 3,

U.U. Samantha Kumara Rajapaksha 4, Pradeep K.W. Abeygunawardhana 5
1 Faculty of Science and Engineering, Curtin University, Colombo, Sri Lanka

2 School of Engineering, Aalto University, Espoo, Finland
3 School of Engineering and Physical Sciences, University of Lincoln, Lincoln, United Kingdom

4, 5 Faculty of Computing, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka

Email: 1 himandi2003@gmail.com, 2 nilusha.jayawickrama@aalto.fi, 3 Odesilva@lincoln.ac.uk, 4 samantha.r@sliit.lk,
5 pradeep.a@sliit.lk

*Corresponding Author

Abstract—With the rise of e-Commerce and the evolution of

robotic technologies, the focus on autonomous navigation within

warehouse environments has increased. This study presents a

simulation-based framework for path planning using Deep Q-

Networks (DQN) in a warehouse environment modeled with

moving obstacles. The proposed solution integrates a prebuilt

map of the environment generated using Simultaneous

Localization and Mapping (SLAM), which provides prior

spatial knowledge of static obstacles. The reinforcement

learning model is formulated with a state space derived from

grayscale images that combine the static map generated by

SLAM and dynamic obstacles in real time. The action space

consists of four discrete movements for the agent. A reward

shaping strategy includes a distance-based reward and penalty

for collisions to encourage goal-reaching and discourage

collisions. An epsilon-greedy policy with exponential decay is

used to balance exploration and exploitation. This system was

implemented in the Robot Operating System (ROS) and Gazebo

simulation environment. The agent was trained over 1000

episodes and metrics such as the number of actions executed to

reach the goal and the cumulative reward per episode were

analyzed to evaluate the convergence of the proposed solution.

The results across two goal locations show that incorporating

the SLAM map enhances learning stability, with the agent

reaching a goal approximately 150 times, nearly double the

success rate compared to the baseline without map information,

which achieved only 80 successful episodes over the same

number of episodes. This indicates faster convergence and

reduced exploration overhead due to improved spatial

awareness.

Keywords—Deep Q-Networks; Path Planning; Simultaneous

Localization and Mapping; Robot Operating System; Gazebo

Simulation.

I. INTRODUCTION

The rapid expansion of e-commerce in the recent years

has driven a greater demand for automation in warehouse

workflows to ensure that operations are carried out efficiently

and securely [1]–[3]. As a result, automation technologies

have rapidly evolved, contributing to benefits such as

improved operational output and reducing costs through

minimal labor [4]–[6]. The shared working space between

humans and robots in modern warehouses requires careful

management to avoid disruptions and ensure a smooth

workflow [7], [8]. Therefore, mobile robots must be equipped

with real-time path planning mechanisms that allow them to

navigate dynamic environments with humans and operate

autonomously.

Reinforcement Learning (RL) has emerged as a powerful

technique for path planning due to its ability to learn from

experiences. Deep Q-Networks (DQN), a RL algorithm,

combines Q-learning with deep neural networks to approach

problems with high-dimensional state spaces [9]. However,

standard DQNs are known to have two main limitations.

These are, the requirement for extensive exploration before

meaningful learning occurs and slow convergence, especially

in environments with large state spaces and sparse rewards

[10], [11]. These limitations make standard DQNs less

practical for real-world applications.

In this work, we aim to address these shortcomings by

providing prior spatial knowledge in the form of a pre-built

static map generated using simultaneous localization and

mapping (SLAM) to the learning agent. The core hypothesis

is that a SLAM-derived map can significantly reduce

exploration overhead and accelerate convergence by

allowing the agent to begin training with a structured

understanding of the environment. While SLAM itself is

widely used in robotic navigation, integrating it with a

learning-based planner has not been thoroughly explored.

In this approach, the SLAM map is incorporated into the

agent’s state representation as a grayscale image. This image

will include information on the availability of free space and

the positions of static obstacles, allowing the agent to learn

optimal paths with less exploration. Additionally, the reward

function also makes use of the map to encourage proximity-

based rewards which allows the DQN to associate

environmental features more efficiently than in maples

setups.

The evaluation is conducted entirely in a simulated

environment with just two static goal positions due to

hardware constraints that restricted extended training across

more goal scenarios. The generalizability of the findings to

Journal of Robotics and Control (JRC) ISSN: 2715-5072 2285

Himandi Medagangoda, Deep Q-Network-Based Path Planning in a Simulated Warehouse Environment with SLAM Map

Integration and Dynamic Obstacles

real-world warehouse deployments and the system’s

performance to highly dynamic warehouse layouts and varied

lighting remain to be validated. Despite the constraints, the

setup was sufficient to demonstrate the effect of using SLAM

maps on training efficiency and convergence. The results

demonstrate that agents trained with the SLAM map achieved

nearly double the number of successful goal completions

compared to those without map input, enabling a comparison

between mapped and maples path planning using a DQN

framework.

The main contributions of this work are as follows;

• A DQN based path planning framework is implemented

and evaluated for dynamic warehouse environments

using a pre-built map generated via GMapping SLAM.

While GMapping is a standard component in the ROS

Navigation Stack, this study shows how prior knowledge

in the form of a static map can reduce the exploration

overhead in RL.

• A reward function tailored to indoor warehouse

environments with dynamic agents is implemented,

combining rewards for goal completion, proximity-based

incentives, and collision penalties to guide the learning

agent.

An experimental comparison of learning performance

with and without SLAM map support in a simulated

warehouse setting.

II. EASE OF USE

A. Global and Local Planners

Path planning was categorized into two main types, global

path planning and local path planning by Chik et al. [12].

Global path planners, such as Dijkstra [13], [14], and A*

[15]–[18], compute the optimum route in static environments.

Meanwhile, local path planners focus on avoiding dynamic

hazards by allowing the robot to observe the environment and

process real-time sensor inputs. This is also referred to as

offline or online, respectively. Local planners include

artificial potential field (APF), dynamic window approach

(DWA), and reinforcement learning algorithms (RL). APF

works with attraction and repelling theory, where it is

attracted to the goal and repelled by an obstacle [19]–[21].

However, this method suffers from the local minima

problem.

The DWA approach includes a set of feasible velocities.

The algorithm selects a velocity from this set in the dynamic

window and guides the agent to its goal. Although the agent

reaches the goal faster using this approach, this method may

fail in environments with high uncertainty or dynamic

changes [22]–[25].

RL has emerged as a robust alternative for handling

dynamic obstacles. The agent receives feedback for every

action it performs. This feedback enables the robot to

continuously learn which actions result in successful

outcomes. Each positive action is rewarded while each

negative or suboptimal actions are given a penalty [26]–[29].

Among the many RL techniques, Q- learning is one of the

most studied algorithms. This method uses a Q-table for Q-

values representation and hence is infeasible for high-

dimensional states [30]–[32]. DQN was introduced in [33] to

address this limitation by integrating artificial neural

networks (ANN) with Q-learning. This could approximate Q-

values with the use of the neural networks [34]–[36].

However, DQN suffers from overestimated Q-values and

slow convergence [37]. To mitigate these problems, several

DQN variants were introduced. Lei proposed Double DQN

(DDQN) in [38] to overcome the problem of overestimation

without any extra computational cost by decoupling action

selection from value estimation [39]–[42]. Dueling DQN

(D3QN) introduced in [43] enables the agent to estimate the

more valuable state making it unnecessary to evaluate the

impact of each action in all states. This accelerates the

learning process and hence allows faster convergence [44]–

[46]. Although the efficiency of this network is high, its

implementation introduces additional complexity. Proximal

Policy Optimization (PPO) offers training stability by using

clipped objective functions and adaptive updates. PPO is

suitable for complex navigation tasks due to its balance

between sample efficiency and robustness [47]–[49].

Shuhuan Wen et al used D3QN together with active SLAM

in [50] to improve navigation by creating the map of the

environment using SLAM. However, this was limited to a

static environment and was a highly complex algorithm.

While these studies highlight the benefits of integrating

SLAM with RL [51]–[53], most focus on mapping tasks

rather than improving DQN convergence.

B. Research Gap

These limitations highlight a research problem where

existing RL-based path planning solutions either require

excessive exploration, suffer from slow convergence, or are

highly complex algorithms that have not been extensively

tested in dynamic warehouse environments with realistic

constraints.

Our work builds on these efforts by demonstrating how

incorporating a static SLAM-generated map as prior

knowledge can reduce exploration overhead in a DQN-based

navigation setup. This is evaluated in a dynamic warehouse

simulation using ROS and Gazebo, with dynamic obstacles

and two goal scenarios with a reward function specific for

indoor environments.

III. PREPARE YOUR PAPER BEFORE STYLING

Using DQN, this research establishes a baseline for

reinforcement learning with SLAM-generated maps. DQNs

utilize a replay buffer to store their past experiences, allowing

the agent to learn more effectively by sampling these [54].

Another notable advantage is that they can process high-

dimensional inputs, including sensor data such as LiDAR

[55]. This capability makes DQNs valuable in practical

robotic systems. However, DQNs require significant

computational power and often offer slow convergence. To

mitigate this, the proposed solution incorporates a map

generated via SLAM to allow the agent to navigate with prior

spatial knowledge and avoid unnecessary exploration.

A. Scope and Assumptions

The objective of this study is to assess whether prior

spatial knowledge via SLAM mapping can reduce

Journal of Robotics and Control (JRC) ISSN: 2715-5072 2286

Himandi Medagangoda, Deep Q-Network-Based Path Planning in a Simulated Warehouse Environment with SLAM Map

Integration and Dynamic Obstacles

exploration overhead in DQN-based learning. The simulation

environment was selected to represent a structured warehouse

scenario and includes dynamic agents but assumes a fixed

static layout. Due to resource constraints, training was capped

at 1000 episodes, which was empirically sufficient for

convergence. This scope enables evaluation of map-assisted

learning in a semi-realistic, reproducible context.

B. ROS: Gazebo Warehouse Simulation

ROS provides a collection of tools and libraries that are

used in research and robust robot applications. Gazebo is a

3D robotic simulator that works alongside ROS, offering a

versatile platform for testing and developing robot

applications under realistic conditions [56], [57]. This

solution was implemented and evaluated within the Gazebo

simulation environment. For this study, a warehouse model

was adopted from [58]. This environment offers a realistic

warehouse setup, incorporating elements like shelving units,

partitions, and dynamic elements. The robotic agent

employed in this study is a Turtlebot3 (burger model)

equipped with a 2D LiDAR sensor for environmental

perception.

C. Simultaneous Localization and Mapping (SLAM)

SLAM is a primary technique in mobile robots that allows

the robot to construct a map of its environment while

simultaneously estimating its location within that space [59],

[60]. In this study, SLAM is implemented by using the

LiDAR on the Turtlebot3 robot. Fig. 1 shows the portable

gray map as a result of SLAM. The white regions in Fig. 1

indicate the free navigable space. The gray area denotes the

restricted area the robot should avoid. The black outlines

correspond to the fixed static obstacles. To prepare this image

in a format that can be processed by the DQN algorithm, the

original map (.pgm) file of size 480×480 is first resized and

then normalized to form a 200×200 grayscale image. This

resized image is then fed into the neural network as input to

the DQN.

Fig. 1. Map of the warehouse created using 2D lidar using GMapping SLAM

algorithm

D. Coordinate System and Robot Localization

To accurately interpret the occupancy grid map generated

by SLAM and enable precise navigation, it is essential to

establish a correspondence between the pixel-based map

representation and real-world dimensions. Each pixel on the

occupancy grid corresponds to a fixed real-world distance.

The (1) shows the resolution of the SLAM-generated map.

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 0.05 𝑚/𝑝𝑖𝑥𝑒𝑙 (1)

The total width and height of the occupancy grid are 480

pixels, which is translated to real world dimensions using (2),

𝑅_𝐷 = 𝑁_𝑃 × 𝑅𝑆 (2)

Where, 𝑅_𝐷 is the real-world dimensions of the warehouse,

𝑁_𝑃 is the number of pixels on the grid and RS is the

resolution. Thus, the warehouse spans 24m×24m in real-

world coordinates. The real-world coordinate corresponding

to the bottom-left corner of the warehouse map is set at (–12,

–12) meters. Therefore, the map can be interpreted as shown

in Fig. 1.

Adaptive monte carlo localization (AMCL) was utilized

to estimate the location of the agent in real-time. AMCL is a

probabilistic localization algorithm that enables the robot to

continuously estimate its pose in a known space using

sensory data such as laser scans and odometry [61]–[63].

While the map server gives a static reference to localize the

robot, AMCL actively updates the robot’s estimated position

within it. This ensures that, as the robot moves and senses the

environment via LiDAR and odometry, its current position

within the static map is continuously updated and corrected

[63], [64]. Accurate localization is a critical requirement in

autonomous navigation. Inaccurate position estimation will

lead to ineffective decision- making [65], [66].

E. Interpreting LiDAR Data and Detecting Obstacles

Sensor readings are initially provided in polar form

consisting of a distance and an angle relative to the robot’s

frame. These coordinates are transformed into Cartesian form

for a grid-based representation. The ranges array containing

the distance values has 720 elements. This suggests that the

angle between consecutive readings is 0.25° (180/720 =

0.25). By applying trigonometric transformations to the

measured angles and distances and using the angle increment

from the LaserScan message, corresponding Cartesian (x, y)

coordinate is calculated. The Cartesian coordinates

representing the obstacles are scaled appropriately and

mapped onto the 200×200 occupancy grid. Within the grid,

the unoccupied space is denoted by 0, while the dynamic

obstacles are denoted by 255. Overlaying the static map

derived from SLAM with the dynamic obstacle map, a

complete snapshot of the environment is created at that time.

Every time the agent executes an action, this composite map

will be updated and will serve as the current state input for

the RL model.

F. Deep Q-Network

Mnih et al. introduced the concept of Deep Q-Leaning in

[33]. This leverages deep neural networks to approximate Q

val- ues in high-dimensional state spaces. In the proposed

solution, the input to the Q-network is a combined occupancy

map that represents static obstacles (from SLAM) and

dynamic obstacles (from real-time LiDAR data). The DQN

architecture consists of three primary components. These

Journal of Robotics and Control (JRC) ISSN: 2715-5072 2287

Himandi Medagangoda, Deep Q-Network-Based Path Planning in a Simulated Warehouse Environment with SLAM Map

Integration and Dynamic Obstacles

include a convolutional neural network (CNN), a replay

buffer, and a target network.

1) Convolutional Neural Networks: CNNs are widely

used in tasks involving image recognition and visual data

processing [67]–[69]. In this study, a grayscale image of the

map is used as the input, and hence a CNN with two

convolutional layers is used to approximate the Q values. The

first layer applies 32 filters of size 8×8 and a stride of 4

followed by a second layer consisting of 64 filters of size 4×4

and a stride of 2. This second layer captures additional

abstract features and refines the output from the initial layer.

Both layers use the Rectified Linear Unit (ReLu) for the

activation function. The input to the DQN is the 200×200

grayscale image representing the presence of both static and

dynamic obstacles, which also serves as the current state of

the agent. The output layer of the network is fully connected

and consists of neurons equal to the size of the action space.

Each neuron outputs a Q-value for one possible action in the

given state. The agent selects its next action depending on

these Q-values. In this implementation, the action space

includes four actions. Table I shows the actions allowed by

the agent.

TABLE I. AGENT ACTIONS AND CORRESPONDING MOVEMENTS

Action Description
Move Forward Moves forward at a speed of 0.5 m/s

Stop Sets both linear and angular speed to 0
Turn Right Turns right by a random angle between 0° - 90°
Turn Left Turns left by a random angle between 0° - 90°

G. Replay Buffer

The primary role of the replay buffer is to store the

experiences/interactions of the agent with the environment

enabling more accurate policy learning. Following an action,

the experience is added to the buffer in the form of a tuple, (s,

a, r, s’, t) which includes the current state, chosen action,

reward received, next state and termination flag, respectively

[70], [71]. At each training step, a random set of past

experiences of a predetermined size is sampled to mitigate

temporal correlations in the data, enabling the agent to learn

from a diverse set of previous experiences, stabilizing

training [72], [73]. The replay buffer has limited capacity.

Therefore, as experiences accumulate, the older experiences

are overwritten with more refined experiences. This

implementation employed a replay buffer with a capacity of

holding 1000 experiences, which pro- vided a good trade-off

between learning diversity and memory efficiency within the

constraints of the simulation environment. A standard

sampling batch size of 32 was used to balance convergence

speed and stability.

H. Target Network

In addition to the main Q-network, a secondary target

network is maintained to ensure stability in the target Q-

value throughout the training phase. This network is updated

at regular intervals [74]–[76]. Specifically, every 10

episodes, this network is updated with the primary network’s

weights to stabilize the training process. This frequency was

chosen because more frequent updates could cause

oscillations in Q- values, while less frequent updates can slow

convergence within constraints of the simulation

environment. The (3) [77], [78] shows how the target 𝑄

values are calculated using the Bellman equation,

𝑄(𝑠, 𝑎) = 𝑟 + (1 − 𝑡) · 𝛾 · 𝑚𝑎𝑥 𝑄(𝑠′, 𝑎′) (3)

where, when the agent performs an action 𝑎 in state 𝑠 and

receives a reward 𝑟, the corresponding 𝑄 value, 𝑄(𝑠, 𝑎) for

that state-action pair, reflects both the current reward 𝑟 and

the anticipated future reward in the subsequent state 𝑠’.
Therefore, if an episode terminates and 𝑡 = 1, the target 𝑄

value equals the immediate reward since no further state is

encountered. Here, the discount factor, 𝛾=0.99, controls the

agent’s emphasis on future rewards relative to immediate

ones. Meanwhile, 𝑚𝑎𝑥𝑄(𝑠′, 𝑎′) denotes the highest predicted

𝑄-value for the next states estimated by the target network in

the batch sampled. This value corresponds to the action that

the agent identified as the one that will result in the highest

future reward

1) Loss Function: To calculate the discrepancy

between the predicted and target 𝑄-values, the Huber loss

function is used in this solution. This function combines the

characteristics of the mean squared error (MSE) and the mean

absolute error (MAE). It’s low sensitivity to outliers makes it

well-suited for stabilizing DQN models [79], [80]. The Huber

loss function is defined as in (4) [81],

𝐿𝛿(𝑦, 𝑄(𝑠, 𝑎)) = {
𝛿|𝑦−𝑄(𝑠,𝑎)|−

1
2

𝛿2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

1
2

(𝑦−𝑄(𝑠,𝑎))
2

 𝑓𝑜𝑟 |𝑦−𝑄(𝑠,𝑎)|≤𝛿
 (4)

Where y denotes the target 𝑄 values, while 𝑄(𝑠, 𝑎) represents

the 𝑄 value predicted by the main network. The loss is

minimized using the Adam optimizer with a learning rate of

1e-4. This learning rate is standard in DQN implementations

and provides stable convergence for our solution without

causing gradient instability or stagnation [82], [83].

2) Epsilon-Greedy Policy: This approach is used to

maintain the balance between exploratory behavior and the

exploitation of known actions during action selection. A

random number is generated at each step. If this number is

less than the current epsilon value (𝜖), a random action is

selected (exploration). Otherwise, the action with the highest

𝑄-value is chosen (exploitation) [84]–[86]. At the beginning

of training, to understand the environment, the agent

prioritizes exploration. As learning progresses, the agent

relies on exploitation to exploit what it has learned. In this

implementation, the epsilon is initially set to 0.999 and

reduces exponentially to a lower limit of 0.01. The values

were selected to prevent premature convergence and to

accommodate the limited number of training episodes in this

study. Once this minimum is reached, it is maintained to

ensure that the agent continues to explore occasionally, even

if the likelihood is low.

3) Reward Function: The reward function is designed

to encourage the agent to take optimal path (least steps) to the

goal by rewarding and discourage collisions and unsafe

behavior by penalizing. In this solution, the reward function

is designed such that, for each action taken, the agent receives

a scalar reward based on one of three conditions: reaching the

goal, approaching the goal, or colliding with an obstacle.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 2288

Himandi Medagangoda, Deep Q-Network-Based Path Planning in a Simulated Warehouse Environment with SLAM Map

Integration and Dynamic Obstacles

• Goal Reward: awarded when the agent is near the goal

within a radius of 0.4m.

• Distance-based reward: awarded when the agent moves

closer to the goal but has not reached it. The reward is

scaled by how close the agent is to the goal.

• Collision penalty: awarded when the agent gets within a

0.3m radius of an obstacle.

These components are mutually exclusive, and only one

reward type is applied per step. The reward for reaching the

target is defined as shown in (5),

𝐺𝑅 = 𝑀𝐺𝑅 × 1
𝑆_𝑇

𝑀_𝑆
+ 100

(5)

where 𝐺𝑅 is the reward for reaching the goal threshold,

𝑀𝐺𝑅=500, the maximum reward for reaching the goal, 𝑆_𝑇

is the number of steps from the initial position to the goal, and

𝑀_𝑆=100, the maximum allowed steps. The reward is

inversely scaled based on the step count used to achieve the

target. This function encourages the agent to reduce the step

count to the goal and promote efficiency in path selection. An

offset of value of 100 ensures that the agent will receive a

non-zero reward even when the target is achieved in the last

step (100th).

If the goal has not yet been reached, the agent receives a

distance-based reward that is defined as in (6)

𝑅 = 100 × (1 − 𝑁_𝐷) × 1
𝑆_𝑇

𝑀_𝑆

(6)

where 𝑁_𝐷 is the normalized distance to the goal,

𝑁𝐷 =
𝐷𝑖𝑠𝑡

𝑚𝑎𝑥 (𝐷𝑖𝑠𝑡)
 (7)

Here, 𝑅 is the reward, 𝐷𝑖𝑠𝑡 is the current Euclidean distance
to the goal, and 𝑚𝑎𝑥(𝐷𝑖𝑠𝑡)=12 m is the maximum distance
in the environment.

A penalty of –1 is awarded when the agent comes within

0.3m of a static or dynamic obstacle, indicating a collision.

This negative reward allows the agent learn to avoid

unsafe/incorrect interactions with its environment.

The threshold values and reward functions were tuned

empirically to achieve stable convergence in simulation and

guided by the standard RL reward principles of goal

proximity, efficiency, and penalty for wrong behavior of the

agent.

I. An Episode

At the beginning of each episode, the agent is placed in

the fixed initial position (0, 0) with a default orientation. The

consistent initialization was intended to simplify early

convergence and enable clearer comparisons between

episodes and between the two scenarios (with and without

map). The agent then begins selecting actions using the 𝜖-

greedy strategy described previously. The agent is allowed to

execute a maximum of 100 actions in each episode.

An episode terminates earlier if any of the following criteria

are met:

• Goal Reached: If the agent successfully reaches the target

within 100 actions or fewer, the episode terminates.

• Collision: In the event of a collision due to an action

taken, the agent is penalized with a negative reward, and

the episode terminates immediately.

• Action limit exceeds: If the agent reaches a maximum of

100 actions and has neither reached the goal nor

encountered a collision, the episode ends.

Algorithm 1. DQN with SLAM Map Integration
1: Initialize: replay buffer, Q-network Q, target

 network Qtarget, exploration rate ϵ

2: for each episode do

3: Initialize robot position and environment

4: static map ← preprocess(SLAM occupancy grid)

5: for each step in the episode do

6: dynamic map ← process lidar()

7: combined map ← max(static map, dynamic map)

8: s ← combined map

9: // Epsilon-greedy action selection

10: With probability ϵ, select a random action a

11: Else, a ← arg maxa′ Q(s, a′)

12: Execute action a

13: reward r ← reward function

14: Get next state s′, and termination flag t

15: Store (s, a, r, s′, t) in replay buffer

16: Sample a mini-batch from replay buffer

17: target y ← Equation(3)

18: Update Q

19: s ← s′

20: Every 10 episodes, update target network: Qtarget ←Q

21: Decay ϵ

22: if goal reached or collision or max steps then

23: break

24: end if

25: end for

26: end for

The algorithm 1 summarizes how the SLAM is integrated

with the DQN in this solution and how each episode works.

Fig. 2 visualizes a high-level workflow of the proposed

solution using a flowchart. This shows what happens in a

single episode.

During this training stage, a basic curriculum learning

strategy was used to stabilize training [87], [88]. Here, the

initial goal was placed closer to the agent’s initial position.

Once the agent consistently reached this goal five times, a

more distant goal was introduced. This incremental learning

strategy allowed the agent to first master simpler navigation

tasks before attempting more complex ones. The threshold of

using five successes was chosen to maintain a balance

between the time taken to train and the learning confidence.

A lower threshold resulted in the agent progressing on the

basis of coincidental success rather than consistently

learning. Meanwhile, a higher threshold risked overfitting to

the current goal and significantly increased training time,

which is a critical factor given our computational constraints.

Fig. 3 shows the target position as a red sphere and the

agent as the base link as visualized in Rviz. The episodes, the

cumulative reward, the average reward, the maximum loss,

the average loss, the target coordinate, the goal reach count

was recorded in a CSV file.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 2289

Himandi Medagangoda, Deep Q-Network-Based Path Planning in a Simulated Warehouse Environment with SLAM Map

Integration and Dynamic Obstacles

Fig. 2. Flowchart: A single episode

Fig. 3. Rviz Visualization of the agent navigating in the warehouse

J. Comparative Evaluation

To evaluate the impact of integrating a SLAM-generated

map, a comparative analysis was conducted between two

DQN models, one where the map was provided and other

trained without any prior knowledge of the static layout. The

results showed that the agent reached nearly twice as many

goals (150 vs. 80) over the same training period,

demonstrating faster convergence. The results will be

discussed further in the next chapter. This comparative result

provides preliminary evidence of the contribution of spatial

priors. In future work, a detailed ablation analysis is expected

to be performed to further quantify individual contributions

to learning performance.

IV. EXPERIMENTAL CONSTRAINTS AND LIMITATIONS

The implementation of this solution requires a large

amount of computational power and memory for several

reasons. These include processing high-resolution maps in

Gazebo, processing a large amount of LiDAR data, high-

dimensional input states (200×200), processing a large

amount of batch data during training from the replay buffer,

and the replay buffer itself consumes a large amount of

memory. Simultaneously running the simulation, neural

network training, and ROS processes require a high-

performance CPU and a high amount of RAM to maximize

performance [89], [90]. A 64 GB RAM and a 12- core CPU

might allow the system to run efficiently. Due to these

computational constraints, the model was trained for 1000

episodes, and the experimental setup was restricted to a single

warehouse layout with two goals. Although this limited the

generalizability of the findings, the inclusion of both static

and dynamic obstacles in this layout provided insights to the

robot’s learning behavior in realistic environments.

V. RESULTS AND DISCUSSION

Following the method discussed above, the model was

trained for 1000 episodes. Using these results, we aim to

assess if integrating a pre-built SLAM map improves

convergence compared to a baseline of when a map is not

used together with DQN to navigate to the goal.

A. Constructing the Slam Map and Localizing

Fig. 1 shows the map constructed using the GMapping

SLAM algorithm and the LiDAR sensor. The odometry

information gives the agent’s current pose relative to the

starting point at (0,0), enabling the agent to determine its

location on the map.

B. Training the DQN Model

The DQN agent underwent training for a total of 1000

episodes, and the training parameters used are shown in

Table II. The hyperparameter value choices and their

empirical rationale are explained in Section 3.

TABLE II. PARAMETERS AND THEIR CORRESPONDING VALUES

Parameter Value
Maximum number of steps/actions per episode 100
Initial epsilon 0.999
Minimum epsilon 0.01
Discount Factor 0.99
Learning rate 1e-4
Size of replay buffer 1000
Sample batch size 32

Journal of Robotics and Control (JRC) ISSN: 2715-5072 2290

Himandi Medagangoda, Deep Q-Network-Based Path Planning in a Simulated Warehouse Environment with SLAM Map

Integration and Dynamic Obstacles

The learning process was evaluated based on two primary

metrics:

• Evaluating step count to goal during successful episodes

• Evaluating cumulative rewards over total training

episodes

1) Measuring steps taken to reach to goal:

This metric can be used to evaluate the training process.

This offers a reliable indicator of the agent’s learning

progress during training. Fig. 4 generated using matplotlib

presents the number of steps taken to reach the goal plotted

against the corresponding successful episodes. In the initial

training phase, the agent has very limited knowledge of the

environment in which it is navigating. There- fore, the agent

explores the environment by randomly executing actions. As

a result, the agent will require more actions/steps to reach the

target early on. As learning progresses, the agent becomes

familiar with the environment, hence learning to take more

purposeful actions.

This results in a reduced number of actions taken by the

agent to reach the target. This deceasing trend in the number

of steps taken indicates that the policy learned by the agent is

becoming more efficient and optimized. During the training

period, the agent successfully reached the target

approximately 150 times. Initially, the agent required around

65 steps (high number) to reach the goal, reflecting its lack of

environmental knowledge. The fluctuations seen following

the sudden decrease suggest that the agent is continuing to

explore, leading the agent to occasionally select random

actions. The plot illustrates that the agent consistently

reached the 1st goal after about 101 successful attempts. A

new goal is introduced only after the agent has reached the

previous goal consecutively five times. This is to ensure that

the behavior has been sufficiently learned. By the time the

agent had mastered the first goal, it only took approximately

25 steps to reach that goal.

A sharp increase in the step count is seen around the 101st
successful episode, corresponding to the introduction of the

second goal. Similarly to the initial target, the agent begins

with a larger step count and gradually reduces as it improves

the policy. Fluctuations in the step count have reduced over

time as the agent progresses to the second goal, indicating the

shift from exploration to exploitation. This behavior suggests

that the agent is refining its policy and learning the optimal

path. With extended training, the agent will also learn to reach

the 2nd goal using the optimal path. Therefore, Fig. 4 is an

effective representation of the agent’s learning trajectory.

2) Baseline comparison: DQN with vs. without SLAM Map:

To assess the impact of prior spatial knowledge on

learning efficiency, the same DQN model was trained

without access to the SLAM-generated map. Fig. 5 shows the

steps taken by the robot to reach the goal when the map is not

provided. In this plot, it can be seen that there were only about

80 successful episodes, while there were about 150 when the

map was used. It can also be seen that the agent struggled to

learn a coherent path-planning strategy, as it did not reliably

reach even the first goal during the course of training,

exhibiting slow convergence. This comparative experiment

further validates the use of the SLAM map to improve

convergence by accelerating the learning process. The results

of the comparative experiment, with and without the SLAM

map are presented in Table III.

TABLE III. COMPARISON OF DQN PERFORMANCE WITH AND WITHOUT

SLAM MAP

Metric
With SLAM

Map

Without

Map

Average steps to reach goal 27.6 58.5

Total successful episodes (out of 1000) 150 85

Average cumulative reward 1700 3000

Average collisions per 100 episodes ∼3.4 ∼17

The results for the Average cumulative reward and

Average collisions per 100 episodes are explained in the

’Measuring Cumulative Reward’ section.

3) Epsilon Decay plot:

Fig. 6 illustrates the exponential decay of the epsilon

value during training. This decay follows the ϵ-Greedy Policy

discussed in Section III, allowing more frequently

exploration initially and gradually allow more exploitation as

learning progresses by relying on the predictions of the Q-

network. This decrease also accounts for the reduced

fluctuations in Fig. 4, as the agent begins to favor more

consistent, reward-driven behavior.

4) Measuring Cumulative Reward:

Fig. 7 shows the cumulative reward plotted against the

number of episodes. In the proposed solution, the agent

receives a significant reward upon reaching a goal, inversely

scaled by the number of actions required to reach it, as shown

in the (5). Additionally, the agent is also incrementally

rewarded when it moves closer to the goal, as seen in the (6).

As a result of this stepwise distance- based reward, episodes

in which more steps are involved tend to accumulate a higher

total reward. Therefore, the cumulative reward is greater in

the initial training episodes when the agent takes longer paths

to reach the goal. As training progresses, the agent

understands to follow the optimal path, reducing the step

count, and hence the stepwise intermediate reward. This

results in a decrease in the cumulative reward, suggesting that

the learned policy is becoming more efficient. The noticeable

fluctuations in the beginning of the plot, likely caused by

frequent collisions during initial exploration, become less

prominent towards the end, indicating that the agent is

learning progressively to avoid collisions. Comparing the

scenarios, with and without the SLAM generated map, the

average cumulative reward is higher in the without-map setup

as a consequence of the agent taking more steps per episode

to reach the goal. In contrast, with the SLAM map provided,

the agent learns a more optimal policy earlier with the prior

spatial knowledge and takes fewer steps, resulting in lower

accumulated intermediate rewards per episode. This explains

the values shown in Table III.

The downward spikes in Fig. 7 represent collisions. As

soon as a collision occurs, the reward becomes minimal. With

the map incorporated, the collisions gradually decrease to an

average of 3.4 per 100 episodes within the training period.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 2291

Himandi Medagangoda, Deep Q-Network-Based Path Planning in a Simulated Warehouse Environment with SLAM Map

Integration and Dynamic Obstacles

Fig. 4. Number of steps to reach the goal per successful episode (with SLAM map)

Fig. 5. Number of steps to reach the goal per successful episode (no SLAM map)

Fig. 6. Epsilon decay

Fig. 7. Cumulative reward

C. Using the Trained Model

The trained DQN model was deployed in the same

warehouse simulation to evaluate its real-time navigation

behavior. The agent successfully learned to navigate to the

first goal (5, -0.6). The action selection process during

deployment followed the learned policy without exploration,

that is, the action with the maximum predicted Q-value was

selected at each step. Fig. 8 shows how the agent successfully

reached the first target.

For instance, Moraes et al. [42] evaluated both DQN and

DDQN with only low-dimensional Laser and goal-relative

inputs and found that DDQN improved success rates but still

took long to converge and stabilize. In contrast, our SLAM-

integrated DQN achieved nearly double the number of

successful goal completions (150 vs. 80) in the same training

window, with a 40% reduction in steps to reach the goal.

The main findings of this study demonstrate that

integrating SLAM-generated static maps with Deep Q-

Networks significantly improves convergence speed and

navigation efficiency in static warehouse environments with

dynamic obstacles. The agent using prior spatial knowledge

achieved nearly twice the success rate compared to the

baseline DQN without map input. This study demonstrates

that providing structured spatial context can enable faster

learning in complex navigation tasks, making such methods

more viable for real-time or resource-constrained robotic

deployments. While the study shows promising results,

limitations include the restricted number of goal positions

and lack of dynamic layout testing, which limit the

generalizability of the results and can be addressed in future

work to strengthen the reproducibility and scalability of the

proposed method.

Fig. 8. Agent successfully reaching first goal

Journal of Robotics and Control (JRC) ISSN: 2715-5072 2292

Himandi Medagangoda, Deep Q-Network-Based Path Planning in a Simulated Warehouse Environment with SLAM Map

Integration and Dynamic Obstacles

VI. CONCLUSION AND FUTURE WORK

This study presented a Deep Q-Network (DQN)-based

path planning framework for autonomous warehouse robots,

integrating a SLAM-generated map to provide prior spatial

knowledge aiming to reduce exploration overhead and

contribute to more efficient policy learning.

The proposed approach was implemented and analyzed in

a simulated Gazebo warehouse environment consisting of

static and dynamic obstacles.

The research contribution lies in demonstrating that

incorporating a SLAM-derived static map as a spatial prior

converges faster to an optimal navigation policy by reducing

exploration overhead while maintaining performance in

dynamic conditions.

The scope of evaluation was limited to a relatively short

training duration with two goal locations due to

computational resource constraints affecting the

generalizability of findings. Although a complete

hyperparameter sensitivity analysis was beyond the scope of

the current study due to computational constraints, we

recognize this as an important direction for future work to

further enhance reproducibility and robustness.

Furthermore, while the SLAM map helps reduce

exploration in relatively stable environments, the system may

under-perform if the environment diverges significantly from

the static map, for example, in high-density human- robot

interaction zones or environments with sudden structural

changes. Real-world deployment would also require

addressing the computational demands of combining high-

dimensional SLAM maps with deep learning in real-time

systems.

However, our study demonstrates promising results to im-

prove the stability of policy learning in constrained

warehouse settings using prior spatial knowledge. This

method contributes new insights and highlights the potential

of map-assisted RL in robotics.

Future work will include extending the model to handle

multiple warehouse layouts and dynamic goal locations,

incorporating domain randomization to improve robustness.

AUTHOR CONTRIBUTIONS

Himandi Medagangoda led the research, implemented the

methodology, performed the simulations, prepared, and re-

viewed the manuscript. Nilusha Jayawickrama provided tech-

nical guidance and critically reviewed the manuscript.

Rajitha de Silva and U.U. Samantha Kumara Rajapaksha

contributed to reviewing the manuscript. Pradeep K.W.

Abeygunawardhana supervised the project and provided

overall direction. All authors reviewed and approved the final

version of the manuscript.

ACKNOWEDGMENTS

The authors thank the Sri Lanka Institute of Information

Technology and the Arthur C. Clarke Institute for providing

resources to train the model.

REFERENCES

[1] Y. Li, R. Zhang, and D. Jiang, “Order-Picking Efficiency in E-

Commerce Warehouses: A Literature Review,” Journal of Theoretical
and Applied Electronic Commerce Research, vol. 17, no. 4, pp. 1812–
1830, 2022, doi: 10.3390/jtaer17040091.

[2] K. Ellithy, M. Salah, I. S. Fahim, and R. Shalaby, “AGV and Industry

4.0 in warehouses: a comprehensive analysis of existing literature and

an innovative framework for flexible automation,” International
Journal of Advanced Manufacturing Technology, vol. 134, no. 1–2, pp.
15–38, 2024, doi: 10.1007/s00170-024-14127-0.

[3] A. A. Tubis and J. Rohman, “Intelligent Warehouse in Industry 4.0—
Systematic Literature Review,” Sensors, vol. 23, no. 8, p. 4105, 2023,
doi: 10.3390/s23084105.

[4] A. R. Khairuddin, M. S. Talib, and H. Haron, “Review on simultaneous

localization and mapping (SLAM),” in Proceedings - 5th IEEE

International Conference on Control System, Computing and
Engineering, ICCSCE 2015, pp. 85–90, 2016, doi:
10.1109/ICCSCE.2015.7482163.

[5] A. Jarašūnienė, K. Čižiūnienė, and A. Čereška, “Research on Impact of
IoT on Warehouse Management,” Sensors, vol. 23, no. 4, p. 2213,

2023, doi: 10.3390/s23042213.

[6] J. T. Licardo, M. Domjan, and T. Orehovački, “Intelligent Robotics—

A Systematic Review of Emerging Technologies and Trends,”

Electronics (Switzerland), vol. 13, no. 3, p. 542, 2024, doi:
10.3390/electronics13030542.

[7] F. Jacob, E. H. Grosse, S. Morana, and C. J. König, “Picking with a
robot colleague: A systematic literature review and evaluation of

technology acceptance in human–robot collaborative warehouses,”

Computers and Industrial Engineering, vol. 180, p. 109262, 2023, doi:
10.1016/j.cie.2023.109262.

[8] C. Scholz et al., “Sensor-enabled safety systems for human–robot

collaboration: A review,” IEEE Sensors Journal, vol. 25, no. 1, pp. 65–
88, 2024, doi: 10.1109/JSEN.2024.3496905

[9] S. Ramesh, S. B. N, S. J. Sathyavarapu, V. Sharma, N. K. Nippun, and
M. Khanna, “Comparative analysis of Q-learning, SARSA, and deep

Q-network for microgrid energy management,” Scientific Reports, vol.
15, no. 1, p. 694, 2025, doi: 10.1038/s41598-024-83625-8.

[10] C. Chen, J. Yu, and S. Qian, “An Enhanced Deep Q Network Algorithm

for Localized Obstacle Avoidance in Indoor Robot Path Planning,”

Applied Sciences (Switzerland), vol. 14, no. 23, p. 11195, 2024, doi:
10.3390/app142311195.

[11] X. Zhang, “Improving exploration efficiency of deep reinforcement
learning in sparse-reward environments,” Expert Systems with
Applications, vol. 185, p. 115529, 2021.

[12] S. F. Chik, C. F. Yeong, E. L. M. Su, T. Y. Lim, Y. Subramaniam, and
P. J. H. Chin, “A review of social-aware navigation frameworks for

service robot in dynamic human environments,” Journal of

Telecommunication, Electronic and Computer Engineering, vol. 8, no.
11, pp. 41–50, 2016.

[13] S. Alshammrei, S. Boubaker, and L. Kolsi, “Improved Dijkstra
Algorithm for Mobile Robot Path Planning and Obstacle Avoidance,”

Computers, Materials and Continua, vol. 72, no. 3, pp. 5939–5954,
2022, doi: 10.32604/cmc.2022.028165.

[14] X. Zhou, J. Yan, M. Yan, K. Mao, R. Yang, and W. Liu, “Path Planning

of Rail-Mounted Logistics Robots Based on the Improved Dijkstra
Algorithm,” Applied Sciences (Switzerland), vol. 13, no. 17, p. 9955,

2023, doi: 10.3390/app13179955.

[15] X. Xu, J. Zeng, Y. Zhao, and X. Lü, “Research on global path planning
algorithm for mobile robots based on improved A*,” Expert Systems

with Applications, vol. 243, pp. 2321–2334, 2024, doi:
10.1016/j.eswa.2023.122922.

[16] Y. Bai, G. Li, and N. Li, “Motion Planning and Tracking Control of

Autonomous Vehicle Based on Improved A∗ Algorithm,” Journal of

Advanced Transportation, vol. 2022, no. 1, p. 1675736, 2022, doi:
10.1155/2022/1675736.

[17] B. Fu et al., “An improved A* algorithm for the industrial robot path

planning with high success rate and short length,” Robotics and
Autonomous Systems, vol. 106, pp. 26–37, 2018, doi:
10.1016/j.robot.2018.04.007.

[18] A. Chatzisavvas, M. Dossis, and M. Dasygenis, “Optimizing Mobile
Robot Navigation Based on A-Star Algorithm for Obstacle Avoidance

Journal of Robotics and Control (JRC) ISSN: 2715-5072 2293

Himandi Medagangoda, Deep Q-Network-Based Path Planning in a Simulated Warehouse Environment with SLAM Map

Integration and Dynamic Obstacles

in Smart Agriculture,” Electronics (Switzerland), vol. 13, no. 11, p.
2057, 2024, doi: 10.3390/electronics13112057.

[19] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile

robots,” in Proceedings - IEEE International Conference on Robotics
and Automation, pp. 500–505, 1985, doi:
10.1109/ROBOT.1985.1087247.

[20] W. Zhang, N. Wang, and W. Wu, “A hybrid path planning algorithm

considering AUV dynamic constraints based on improved A*

algorithm and APF algorithm,” Ocean Engineering, vol. 285, p.
115333, 2023, doi: 10.1016/j.oceaneng.2023.115333.

[21] J. Gao, X. Xu, Q. Pu, P. B. Petrovic, A. Rodic, and Z. Wang, “A Hybrid

Path Planning Method Based on Improved A∗ and CSA-APF

Algorithms,” IEEE Access, vol. 12, pp. 39139–39151, 2024, doi:
10.1109/ACCESS.2024.3372573.

[22] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to

collision avoidance,” IEEE Robotics and Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997, doi: 10.1109/100.580977.

[23] K. Qi, E. Li, and Y. Mao, “Dynamic Path Planning of Mobile Robot
Based on Improved A* Algorithm and Adaptive DWA,” Shuju Caiji

Yu Chuli/Journal of Data Acquisition and Processing, vol. 38, no. 2,

pp. 451–467, 2023, doi: 10.16337/j.1004-9037.2023.02.019.

[24] X. Bai, H. Jiang, J. Cui, K. Lu, P. Chen, and M. Zhang, “UAV Path

Planning Based on Improved A ∗ and DWA Algorithms,” International

Journal of Aerospace Engineering, vol. 2021, no. 1, p. 4511252, 2021,
doi: 10.1155/2021/4511252.

[25] W. Guan and K. Wang, “Autonomous Collision Avoidance of

Unmanned Surface Vehicles Based on Improved A-Star and Dynamic
Window Approach Algorithms,” IEEE Intelligent Transportation

Systems Magazine, vol. 15, no. 3, pp. 36–50, 2023, doi:
10.1109/MITS.2022.3229109.

[26] M. Naeem, S. T. H. Rizvi, and A. Coronato, “A Gentle Introduction to

Reinforcement Learning and its Application in Different Fields,” IEEE

Access, vol. 8, pp. 209320–209344, 2020, doi:
10.1109/ACCESS.2020.3038605.

[27] M. Naeem, A. Coronato, Z. Ullah, S. Bashir, and G. Paragliola,
“Optimal User Scheduling in Multi Antenna System Using Multi Agent

Reinforcement Learning,” Sensors, vol. 22, no. 21, p. 8278, 2022, doi:
10.3390/s22218278.

[28] W. Kumwilaisak, S. Phikulngoen, J. Piriyataravet, N. Thatphithakkul,

and C. Hansakunbuntheung, “Adaptive Call Center Workforce

Management With Deep Neural Network and Reinforcement
Learning,” IEEE Access, vol. 10, pp. 35712–35724, 2022, doi:
10.1109/ACCESS.2022.3160452.

[29] A. Alwarafy, M. Abdallah, B. S. Ciftler, A. Al-Fuqaha, and M. Hamdi,

“The Frontiers of Deep Reinforcement Learning for Resource

Management in Future Wireless HetNets: Techniques, Challenges, and
Research Directions,” IEEE Open Journal of the Communications

Society, vol. 3, pp. 322–365, 2022, doi:
10.1109/OJCOMS.2022.3153226.

[30] Q. Zhou, Y. Lian, J. Wu, M. Zhu, H. Wang, and J. Cao, “An optimized

Q-Learning algorithm for mobile robot local path planning,”
Knowledge-Based Systems, vol. 286, p. 111400, 2024, doi:
10.1016/j.knosys.2024.111400.

[31] Y. Lyu, A. Côme, Y. Zhang, and M. S. Talebi, “Scaling Up Q-Learning
via Exploiting State–Action Equivalence,” Entropy, vol. 25, no. 4, p.
584, 2023, doi: 10.3390/e25040584.

[32] N. Sutisna, A. M. R. Ilmy, I. Syafalni, R. Mulyawan, and T. Adiono,

“FARANE-Q: Fast Parallel and Pipeline Q-Learning Accelerator for

Configurable Reinforcement Learning SoC,” IEEE Access, vol. 11, pp.
144–161, 2023, doi: 10.1109/ACCESS.2022.3232853.

[33] V. Mnih et al., “Human-level control through deep reinforcement

learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015, doi:
10.1038/nature14236.

[34] J. Li, Y. Chen, X. N. Zhao, and J. Huang, “An improved DQN path
planning algorithm,” Journal of Supercomputing, vol. 78, no. 1, pp.
616–639, 2022, doi: 10.1007/s11227-021-03878-2.

[35] B. Varga, B. Kulcsár, and M. H. Chehreghani, “Deep Q-learning: A
robust control approach,” International Journal of Robust and

Nonlinear Control, vol. 33, no. 1, pp. 526–544, 2023, doi:
10.1002/rnc.6457.

[36] T. Nakamura, M. Kobayashi, and N. Motoi, “Path Planning for Mobile

Robot Considering Turnabouts on Narrow Road by Deep Q-Network,”

IEEE Access, vol. 11, pp. 19111–19121, 2023, doi:
10.1109/ACCESS.2023.3247730.

[37] R. Singh, J. Ren, and X. Lin, “A Review of Deep Reinforcement

Learning Algorithms for Mobile Robot Path Planning,” Vehicles, vol.
5, no. 4, pp. 1423–1451, 2023, doi: 10.3390/vehicles5040078.

[38] X. Lei, Z. Zhang, and P. Dong, “Dynamic Path Planning of Unknown
Environment Based on Deep Reinforcement Learning,” Journal of
Robotics, vol. 2018, p. 10, 2018, doi: 10.1155/2018/5781591.

[39] X. Zhang, X. Shi, Z. Zhang, Z. Wang, and L. Zhang, “A DDQN Path
Planning Algorithm Based on Experience Classification and Multi

Steps for Mobile Robots,” Electronics (Switzerland), vol. 11, no. 14, p.
2120, 2022, doi: 10.3390/electronics11142120.

[40] A. Khlifi, M. Othmani, and M. Kherallah, “A Novel Approach to

Autonomous Driving Using Double Deep Q-Network-Bsed Deep
Reinforcement Learning,” World Electric Vehicle Journal, vol. 16, no.
3, 2025, doi: 10.3390/wevj16030138.

[41] L. Chen, Q. Wang, C. Deng, B. Xie, X. Tuo, and G. Jiang, “Improved
Double Deep Q-Network Algorithm Applied to Multi-Dimensional

Environment Path Planning of Hexapod Robots,” Sensors, vol. 24, no.
7, p. 2061, 2024, doi: 10.3390/s24072061.

[42] L. D. de Moraes et al., “Double Deep Reinforcement Learning

Techniques for Low Dimensional Sensing Mapless Navigation
of Terrestrial Mobile Robots,” in Lecture Notes in Networks and Systems,
vol. 715 LNNS, pp. 156–165, 2023, doi: 10.1007/978-3-031-35507-3_16.

[43] J. Cao et al., “Study on the Path Planning Algorithm Based on Dueling

Deep Q Network,” in Journal of Physics: Conference Series, vol. 1920,
no. 1, 2021, doi: 10.1088/1742-6596/1920/1/012084.

[44] M. Gök, “Dynamic path planning via Dueling Double Deep Q-Network

(D3QN) with prioritized experience replay,” Applied Soft Computing,
vol. 158, p. 111503, 2024, doi: 10.1016/j.asoc.2024.111503.

[45] D. A. Deguale, L. Yu, M. L. Sinishaw, and K. Li, “Enhancing Stability

and Performance in Mobile Robot Path Planning with PMR-Dueling
DQN Algorithm,” Sensors, vol. 24, no. 5, p. 1523, 2024, doi:
10.3390/s24051523.

[46] W. Hu, Y. Zhou, and H. W. Ho, “Mobile Robot Navigation Based on
Noisy N-Step Dueling Double Deep Q-Network and Prioritized

Experience Replay,” Electronics (Switzerland), vol. 13, no. 12, p. 2423,
2024, doi: 10.3390/electronics13122423.

[47] J. Zhang, Z. Zhang, S. Han, and S. Lü, “Proximal policy optimization

via enhanced exploration efficiency,” Information Sciences, vol. 609,
pp. 750–765, 2022, doi: 10.1016/j.ins.2022.07.111.

[48] C. C. Wong, K. D. Weng, and B. Y. Yu, “Multi-Robot Navigation

System Design Based on Proximal Policy Optimization Algorithm,”
Information (Switzerland), vol. 15, no. 9, p. 518, 2024, doi:
10.3390/info15090518.

[49] H. Taheri, S. R. Hosseini, and M. A. Nekoui, “Deep Reinforcement

Learning with Enhanced PPO for Safe Mobile Robot Navigation,”
arXiv preprint arXiv:2405.16266, 2024.

[50] S. Wen, Y. Zhao, X. Yuan, Z. Wang, D. Zhang, and L. Manfredi, “Path

planning for active SLAM based on deep reinforcement learning under
unknown environments,” Intelligent Service Robotics, vol. 13, no. 2,
pp. 263–272, 2020, doi: 10.1007/s11370-019-00310-w.

[51] M. F. Ahmed, K. Masood, V. Fremont, and I. Fantoni, “Active SLAM:
A Review on Last Decade,” Sensors, vol. 23, no. 19, p. 8097, 2023,
doi: 10.3390/s23198097.

[52] N. Botteghi, B. Sirmacek, R. Schulte, M. Poel, and C. Brune,

“Reinforcement learning helps slam: Learning to build maps,”

International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences - ISPRS Archives, vol. 43, no. B4, pp.
329–336, 2020, doi: 10.5194/isprs-archives-XLIII-B4-2020-329-2020.

[53] Y. Huang, H. Zhao, and X. Peng, “A deep reinforcement learning-
based framework for active SLAM in unknown environments,”
Robotics, vol. 12, no. 1, p. 8, 2023, doi: 10.3390/robotics12010008

[54] X. Zhang, X. Shi, Z. Zhang, Z. Wang, and L. Zhang, “A DDQN path

planning algorithm based on experience classification and multi steps
for mobile robots,” Electronics, vol. 11, no. 14, p. 2120, 2022.

[55] M. F. R. Lee and S. H. Yusuf, “Mobile Robot Navigation Using Deep

Reinforcement Learning,” Processes, vol. 10, no. 12, p. 2748, 2022,
doi: 10.3390/pr10122748.

[56] M. A. Chunab-Rodríguez, A. Santana-Díaz, J. Rodríguez-Arce, E.

Sánchez-Tapia, and C. A. Balbuena-Campuzano, “A Free Simulation

Journal of Robotics and Control (JRC) ISSN: 2715-5072 2294

Himandi Medagangoda, Deep Q-Network-Based Path Planning in a Simulated Warehouse Environment with SLAM Map

Integration and Dynamic Obstacles

Environment Based on ROS for Teaching Autonomous Vehicle
Navigation Algorithms,” Applied Sciences (Switzerland), vol. 12, no.

14, p. 7277, 2022, doi: 10.3390/app12147277.

[57] R. Mengacci, G. Zambella, G. Grioli, D. Caporale, M. G. Catalano, and
A. Bicchi, “An Open-Source ROS-Gazebo Toolbox for Simulating

Robots With Compliant Actuators,” Frontiers in Robotics and AI, vol.
8, p. 713083, 2021, doi: 10.3389/frobt.2021.713083.

[58] W. Han, “Robotics evaluation toolkits,” GitHub. 2024. [Online].

Available: https://github.com/wh200720041/warehouse_simulation_
toolkit/blob/master/README.md.

[59] Y. Raoui and M. Amraoui, “Simultaneous Localization and Mapping

of a Mobile Robot with Stereo Camera Using ORB Features,” Journal
of Automation, Mobile Robotics and Intelligent Systems, vol. 18, no. 2,
pp. 62–71, 2024, doi: 10.14313/jamris/2-2024/14.

[60] J. Qiao, J. Guo, and Y. Li, “Simultaneous localization and mapping

(SLAM)-based robot localization and navigation algorithm,” Applied

Water Science, vol. 14, no. 7, p. 151, 2024, doi: 10.1007/s13201-024-
02183-6.

[61] F. M. Rico, J. M. G. Hernández, R. Pérez-Rodríguez, J. D. Peña-

Narvaez, and A. G. Gómez-Jacinto, “Open source robot localization for

nonplanar environments,” Journal of Field Robotics, vol. 41, no. 6, pp.
1922–1939, 2024, doi: 10.1002/rob.22353.

[62] H. Zhu and Q. Luo, “Indoor Localization of Mobile Robots Based on

the Fusion of an Improved AMCL Algorithm and a Collision

Algorithm,” IEEE Access, vol. 12, pp. 67199–67208, 2024, doi:
10.1109/ACCESS.2024.3399192.

[63] M. Peavy, P. Kim, H. Oyediran, and K. Kim, “Integration of Real-Time
Semantic Building Map Updating with Adaptive Monte Carlo

Localization (AMCL) for Robust Indoor Mobile Robot Localization,”

Applied Sciences (Switzerland), vol. 13, no. 2, p. 909, 2023, doi:
10.3390/app13020909.

[64] S. He, T. Song, P. Wang, C. Ding, and X. Wu, “An Enhanced Adaptive

Monte Carlo Localization for Service Robots in Dynamic and
Featureless Environments,” Journal of Intelligent and Robotic

Systems: Theory and Applications, vol. 108, no. 1, 2023, doi:
10.1007/s10846-023-01858-7.

[65] Y. Cao, K. Ni, T. Kawaguchi, and S. Hashimoto, “Path Following for

Autonomous Mobile Robots with Deep Reinforcement Learning,”

Sensors, vol. 24, no. 2, p. 561, 2024, doi: 10.3390/s24020561.

[66] M. Usayiwevu, F. Sukkar, C. Yoo, R. Fitch, and T. Vidal-Calleja,

“Continuous planning for inertial-aided systems,” Autonomous Robots,
vol. 48, no. 8, p. 24, 2024, doi: 10.1007/s10514-024-10180-6.

[67] X. Zhao, L. Wang, Y. Zhang, X. Han, M. Deveci, and M. Parmar, “A
review of convolutional neural networks in computer vision,” Artificial

Intelligence Review, vol. 57, no. 4, 2024, doi: 10.1007/s10462-024-
10721-6.

[68] G. Rangel, J. C. Cuevas-Tello, J. Nunez-Varela, C. Puente, and A. G.

Silva-Trujillo, “A Survey on Convolutional Neural Networks and Their
Performance Limitations in Image Recognition Tasks,” Journal of
Sensors, vol. 2024, 2024, doi: 10.1155/2024/2797320.

[69] A. Younesi, M. Ansari, M. Fazli, A. Ejlali, M. Shafique, and J. Henkel,
"A Comprehensive Survey of Convolutions in Deep Learning:

Applications, Challenges, and Future Trends," in IEEE Access, vol. 12,
pp. 41180-41218, 2024, doi: 10.1109/ACCESS.2024.3376441.

[70] D. E. Neves, L. Ishitani, and Z. K. G. do Patrocínio Júnior, “Advances

and challenges in learning from experience replay,” Artificial

Intelligence Review, vol. 58, no. 2, 2025, doi: 10.1007/s10462-024-
11062-0.

[71] H. Hassani, S. Nikan, and A. Shami, “Improved exploration–
exploitation trade-off through adaptive prioritized experience replay,”

Neurocomputing, vol. 614, p. 128836, 2025, doi:
10.1016/j.neucom.2024.128836.

[72] Y. Yang, M. Xi, H. Dai, J. Wen, and J. Yang, “Z-Score Experience

Replay in Off-Policy Deep Reinforcement Learning,” Sensors, vol. 24,
no. 23, p. 7746, 2024, doi: 10.3390/s24237746.

[73] J. Ma, D. Ning, C. Zhang, and S. Liu, “Fresher Experience Plays a

More Important Role in Prioritized Experience Replay,” Applied

Sciences (Switzerland), vol. 12, no. 23, p. 12489, 2022, doi:
10.3390/app122312489.

[74] C. Kim, “Target-Network Update Linked with Learning Rate Decay

Based on Mutual Information and Reward in Deep Reinforcement
Learning,” Symmetry, vol. 15, no. 10, 2023, doi:
10.3390/sym15101840.

[75] P. Wang, X. Li, C. Song, and S. Zhai, “Research on Dynamic Path

Planning of Wheeled Robot Based on Deep Reinforcement Learning

on the Slope Ground,” Journal of Robotics, vol. 2020, no. 1, p.
7167243, 2020, doi: 10.1155/2020/7167243.

[76] C. Kim, “Temporal consistency-based loss function for both deep q-

networks and deep deterministic policy gradients for continuous
actions,” Symmetry, vol. 13, no. 12, p. 2411, 2021, doi:
10.3390/sym13122411.

[77] S. Meyn, “The Projected Bellman Equation in Reinforcement

Learning,” IEEE Transactions on Automatic Control, vol. 69, no. 12,
pp. 8323–8337, 2024, doi: 10.1109/TAC.2024.3409647.

[78] Z. Ben Hazem, “Study of Q-learning and deep Q-network learning

control for a rotary inverted pendulum system,” Discover Applied
Sciences, vol. 6, no. 2, 2024, doi: 10.1007/s42452-024-05690-y.

[79] X. Xu, X. Li, N. Chen, D. Zhao, and C. Chen, “Autonomous Obstacle

Avoidance with Improved Deep Reinforcement Learning Based on
Dynamic Huber Loss,” Applied Sciences (Switzerland), vol. 15, no. 5,
p. 2776, 2025, doi: 10.3390/app15052776.

[80] S. Mishra and A. Arora, “A Huber reward function-driven deep

reinforcement learning solution for cart-pole balancing problem,”

Neural Computing and Applications, vol. 35, no. 23, pp. 16705–16722,
2023, doi: 10.1007/s00521-022-07606-6.

[81] S. Mishra and A. Arora, “Double Deep Q Network with Huber Reward

Function for Cart-Pole Balancing Problem,” International Journal of
Performability Engineering, vol. 18, no. 9, pp. 644–653, 2022, doi:
10.23940/ijpe.22.09.p5.644653.

[82] M. Li, X. Gu, C. Zeng, and Y. Feng, “Feasibility Analysis and

Application of Reinforcement Learning Algorithm Based on Dynamic

Parameter Adjustment,” Algorithms, vol. 13, no. 9, p. 239, Sep. 2020,
doi: 10.3390/a13090239.

[83] Y. Zhang, W. Zhao, J. Wang, and Y. Yuan, “Recent progress,

challenges and future prospects of applied deep reinforcement learning:

A practical perspective in path planning,” Neurocomputing, vol. 608,
p. 128423, 2024.

[84] N. Khlif, K. Nahla, and B. Safya, “Reinforcement learning with

modified exploration strategy for mobile robot path planning,”

Robotica, vol. 41, no. 9, pp. 2688–2702, 2023, doi:
10.1017/S0263574723000607.

[85] Y. Yin, Z. Chen, G. Liu, and J. Guo, “A Mapless Local Path Planning

Approach Using Deep Reinforcement Learning Framework,” Sensors,
vol. 23, no. 4, p. 2036, 2023, doi: 10.3390/s23042036.

[86] A. de J. Plasencia-Salgueiro, “Deep Reinforcement Learning for
Autonomous Mobile Robot Navigation,” Studies in Computational

Intelligence, vol. 1093, no. 17, pp. 195–237, 2023, doi: 10.1007/978-
3-031-28715-2_7.

[87] E. Sayar, G. Iacca, and A. Knoll, “Curriculum Learning for Robot

Manipulation Tasks With Sparse Reward Through Environment
Shifts,” IEEE Access, vol. 12, pp. 46626–46635, 2024, doi:
10.1109/ACCESS.2024.3382264.

[88] K. Or et al., “Curriculum-reinforcement learning on simulation

platform of tendon-driven high-degree of freedom underactuated

manipulator,” Frontiers in Robotics and AI, vol. 10, p. 1066518, 2023,
doi: 10.3389/frobt.2023.1066518.

[89] F. J. Mañas-Álvarez, M. Guinaldo, R. Dormido, and S. Dormido-

Canto, “Scalability of Cyber-Physical Systems with Real and Virtual
Robots in ROS 2,” Sensors, vol. 23, no. 13, p. 6073, 2023, doi:
10.3390/s23136073.

[90] J. Platt and K. Ricks, “Comparative Analysis of ROS-Unity3D and
ROS-Gazebo for Mobile Ground Robot Simulation,” Journal of

Intelligent and Robotic Systems: Theory and Applications, vol. 106, no.
4, p. 80, 2022, doi: 10.1007/s10846-022-01766-2.

