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Abstract—In the field of wheeled mobile robots (WMRs), 

path planning is a critical concern. WMRs employ advanced 

algorithms to find out the feasible path from a starting point to 

a specific destination. The paper proposes efficient and optimal 

path planning for WMRs, integrating collision avoidance 

strategies and smoothed techniques to determine the best route 

during navigation. The proposed hybrid path planning consists 

of improved RRTstar algorithm and reinforcement learning 

method. Therefore, the RRT* algorithm employs random 

sampling in conjunction with a reinforcement learning model to 

purposefully guide the sampling process towards areas that 

demonstrate an increased likelihood of successful navigation 

completion. The proposed RRTstar-RL algorithm generates 

significantly shorter trajectories compared to the traditional 

RRT and RRTstar methods. Specifically, the path length with 

the proposed algorithm is 11.323 meters, while the lengths for 

RRT and RRTstar are 15.74 and 14.40 meters, respectively. 

Moreover, the optimization of computation time, especially 

when using pre-trained data, greatly speeds up the path-finding 

calculation process. In particular, the time needed to generate 

the optimal path with the RRTstar-RL algorithm is 2.02 times 

faster than that of RRTstar and 1.6 times faster than RRT. 

Finally, the proposed RRTstar-RL algorithm has been 

successfully verified for feasibility and effectively meets 

numerous objectives established during simulations and 

validation experiments. 

Keywords—Wheeled Mobile Robots; Reinforcement 

Learning; Rrtstar; Path Planning. 

I. INTRODUCTION  

In recent years, mobile robots have gained significant 

prominence in the domains of automation and robotics, 

particularly in navigation tasks within environments such as 

warehouses and manufacturing facilities. Motion and path 

planning are fundamental components that enable wheeled 

mobile robots (WMRs) to navigate autonomously [1]-[5]. 

Upon acquiring a global or local map through environmental 

perception, the robot must formulate a feasible trajectory 

from its initial position to the desired destination. These 

robots are required to operate with both flexibility and 

precision to effectively execute their assigned tasks. Prior 

research has investigated various image processing 

techniques and control strategies aimed at enhancing the 

operational flexibility and cognitive capabilities of WMRs. 

Traditional control methods are often effective only when the 

specific characteristics of the system and the precise locations 

of tracked objects are known [6]-[10]. For example, visual 

servoing utilizes continuous visual feedback to guide a 

mobile robot toward a stationary target [11]-[17]. However, 

achieving this objective can be particularly challenging in 

environments characterized by complex and unpredictable 

behaviors, as well as uncertain disturbances [18], [19]. Such 

irregular fluctuations in control systems can considerably 

affect the efficacy and stability of control mechanisms. 

Consequently, it is imperative to develop a system that 

demonstrates exceptional tracking capabilities to improve the 

performance of vision-based mobile robots. A critical 

component in the pursuit of autonomy is motion planning, 

which enables wheeled mobile robots (WMRs) to determine 

their own trajectories [20], [21]. Once equipped with either a 

global or local map through environmental awareness, 

WMRs must formulate a feasible path from their initial 

position to their intended destination. This journey must 

comply with specific criteria, which may include reducing 

operational costs, identifying the most expedient route, or 

minimizing travel time [22]-[23]. 

Path planning algorithms function as proficient 

navigators, adeptly determining routes from initial points to 

destinations while skillfully circumventing obstacles [24], 

[25]. These algorithms can be classified into two primary 

categories: global and local path planning. Global path 

planning serves as a comprehensive strategist, identifying a 

sequence of critical waypoints that connect the starting point 

to the endpoint [26]-[30]. It utilizes three fundamental 

techniques: graph search, sampling search, and dynamic 

search. Graph search algorithms, such as Dijkstra’s [31] and 

Astar [32], excel in low-dimensional spaces, ensuring a 

comprehensive exploration of potential routes. In contrast, 

sampling search algorithms are suited for high-dimensional 

spaces, providing a probabilistic assurance of pathfinding. 

Dynamic search, on the other hand, improves the 

connectivity of path nodes, albeit at the expense of some 

completeness. Conversely, local path planning operates as a 

meticulous artist, generating precise trajectories from the 

start node to the target node within a localized area [33]-[38]. 

This category encompasses traditional methods such as the 

Rapidly exploring Random Tree (RRT) [39], Time-Elastic 

Band (TEB) [40], Dynamic Window Approach (DWA) [41], 

[42], Artificial Potential Field (APF) [43], [44], and Neural 

Network Methods (NNM) [45], [46].  As we consider future 

developments, the trajectory of motion planning for WMRs 
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is evident: it is transitioning from broad, coarse path planning 

in spatial contexts to detailed trajectory planning in temporal 

domains, facilitated by the continuously advancing 

capabilities of computational power. 

In a comprehensive examination of path finding 

algorithms, Liu et al. [47] presented the weighted Astar 

algorithm to complete the WMR’s understanding. 

Concurrently, Feng et al. [48] achieved significant 

advancements of the bidirectional search algorithm for 

optimal values. Dang et al. [49] introduced the innovative 

jump point search (JPS) algorithm for eliminating the 

redundant Astar path point, in grid maps. The hybrid JBS-

A*B algorithm and improved DWA increased the safety in 

local areas. Building upon this progress, Esmaiel et al. [50] 

developed the LQR-RRTstar algorithm, which utilizes a 

Linear Quadratic Regulator (LQR) to determine the optimal 

path for extended random tree nodes within a specified 

timeframe, in dynamic environments. Wang et al. [51] 

addressed this challenge by formulating a quadratic convex 

optimization problem aimed at minimizing the discrepancy 

between the current and ideal states, thereby directly 

determining the optimal trajectory under dynamic 

constraints. Finally, Zhang et al. [52] introduced the Flat-

RRTstar algorithm, specifically designed for differentially 

flat systems. Therefore, trajectory kinematic constraints 

derive optimal motion primitives between two grid states, 

ultimately producing suboptimal trajectories that connect two 

nodes. 

The analysis presented above clearly indicates that 

various navigation strategies possess distinct advantages and 

disadvantages. To facilitate seamless movement and enhance 

the stability of WMRs while tracking their trajectories, we 

propose a hybrid path planning approach that integrates an 

improved RRTstar algorithm with RL method [53], [54]. 

Initially, the RRTstar algorithm is refined to leverage the 

benefits of reinforcement learning. To address the 

inefficiencies associated with the sampling process of the 

RRTstar algorithm, we have incorporated a reinforcement 

learning framework. This framework comprises an Actor, 

which determines the appropriate actions to be taken, and a 

Critic, which evaluates the effectiveness of these actions and 

provides feedback for necessary adjustments to the WMRs in 

dynamic environments. The Actor is constructed using the U-

Net architecture [55], [56], which is responsible for 

generating probability maps, while the Critic employs the 

MobileNetV2 [57]-[60] architecture to assess the current 

policy, or the weight patterns produced by the Actor, in 

relation to the achievement of the reward parameter. The 

proposed RRTstar-RL algorithm offers significant 

advantages, including a reduction in inefficient sampling, the 

extraction of map features that incorporate trained data into 

the pathfinding process, and an acceleration of processing 

time due to a decreased need for sample review. Two basic 

drawbacks of RRTstar have been addressed, including the 

inefficient random sampling process and the lack of 

connectivity between samples. Finally, the feasibility of the 

proposed RRTstar-RL algorithm has been successfully 

validated, demonstrating its effectiveness in achieving 

various objectives established during simulations and 

validation experiments. 

II. PROPOSED METHOD 

A. RRTstar Algorithms 

RRTstar algorithm represents an advancement over the 

conventional RRT methodology (see Fig. 1), particularly in 

the domains of pathfinding and optimization. Its primary aim 

is to determine the most efficient and feasible route for 

navigation from a specified starting point 𝑥𝑖𝑛𝑖𝑡  to a designated 

destination 𝑥𝑔𝑜𝑎𝑙 . The operational framework involves the 

random selection of points, referred to as 𝑥𝑟𝑎𝑛𝑑, which 

facilitates the expansion of the search tree. Subsequently, the 

algorithm identifies the vertices within the tree, denoted as 

𝑥𝑛𝑒𝑎𝑟 , that are closest to 𝑥𝑟𝑎𝑛𝑑, while adhering to a 

predetermined distance threshold s to ensure that the 

trajectory from 𝑥𝑛𝑒𝑎𝑟  to 𝑥𝑛𝑒𝑤  remains unobstructed by 

obstacles. The neighboring points are then evaluated, and the 

parent point with the lowest associated cost is selected. 

Ultimately, the neighboring points are reconnected to 

optimize the overall path, culminating in a complete route. 

 

Fig. 1. Traditional RRT algorithm 

 The RRTstar algorithm diverges from the conventional 

approach of selecting the nearest point as the parent point for 

the new point. As illustrated in Fig. 2, this process involves 

drawing a circle around the nearest point 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡  and 

assessing the distance between any point within this circle 

and the new point 𝑥𝑛𝑒𝑤 , in Fig. 2(a). If the distance from 

𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡  to 𝑥𝑛𝑒𝑤 is less than the distance from 𝑥𝑛𝑒𝑤  to other 

points (𝑞1 or 𝑞2), a connection is established between 𝑟𝑛𝑒𝑎𝑟𝑒𝑠𝑡  

and 𝑥𝑛𝑒𝑤 , in Fig. 2(b). Additionally, it is necessary to evaluate 

the shortest distance between 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡  and 𝑞2. Should the 

distance from 𝑥𝑛𝑒𝑤  to 𝑞2 be shorter, the parent of 𝑞2 is 

updated to 𝑥𝑛𝑒𝑤  (see Fig. 2(c)). 

 

Fig. 2. RRTstar algorithm 

Within the context of this research, the authors have 

developed the RRTstar algorithm to facilitate enhancements 

when utilizing reinforcement learning techniques. In 

particular, 𝑥𝑟𝑎𝑛𝑑 points are selected randomly from the 

configuration space in accordance with the established 

probability map, which delineates marginal probability along 

the X-axis, in (1) and conditional probability along the Y-

axis, in (2): 

𝑃(𝑥) = ∑ 𝑃(𝑥, 𝑦)

𝑦

 (1) 
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𝑃(𝑥 ∣ 𝑦) =
𝑃(𝑥, 𝑦)

𝑃(𝑥)
 (2) 

There is always the formula: 

𝑥𝑟𝑎𝑛𝑑 ∼ 𝑃(𝑥, 𝑦) ∈ 𝐶𝑓𝑟𝑒𝑒 (3) 

Where 𝐶𝑓𝑟𝑒𝑒 is configuration space. 

The process of finding the nearest point consists of the 𝑘 

neighbors closest to the 𝑥𝑟𝑎𝑛𝑑  point in the tree: 

𝑁𝑘(𝑥𝑟𝑎𝑛𝑑) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥𝑖∈𝑇 ∥ 𝑥𝑟𝑎𝑛𝑑 − 𝑥𝑖 ∥2 , 𝑖 = 1. . . 𝑘 (4) 

where 𝑇 is the set of existing points in the search tree. ∥ 𝑥𝑟𝑎𝑛𝑑

− 𝑥𝑖 ∥2 is the Euclidean distance between 𝑥𝑟𝑎𝑛𝑑 and 𝑥𝑖 in 

space. Points 𝑥𝑛𝑒𝑤  are created in the direction from 𝑥𝑛𝑒𝑎𝑟  to 

𝑥𝑟𝑎𝑛𝑑  satisfying the allowed distance: 

𝑥𝑛𝑒𝑤 = 𝑥𝑛𝑒𝑎𝑟 + 𝑚𝑖𝑛(𝑟𝑎𝑛𝑔𝑒, ∥ 𝑥𝑟𝑎𝑛𝑑 − 𝑥𝑛𝑒𝑎𝑟

∥) ⋅
𝑥𝑟𝑎𝑛𝑑 − 𝑥𝑛𝑒𝑎𝑟

∥ 𝑥𝑟𝑎𝑛𝑑 − 𝑥𝑛𝑒𝑎𝑟 ∥
 

(5) 

The valid points are checked for collisions with obstacles to 

select no collision points. Then the optimal parent is selected 

based on selecting points from 𝑘 neighbors so that the total 

cost from the current point is minimum. The selection 

function is illustrated as follows: 

𝑥𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑐(𝑥𝑖)+∥ 𝑥𝑖 − 𝑥𝑛𝑒𝑤 ∥ (6) 

where 𝑐 is the distance from the current point to 𝑥𝑖. The 

parents of the points are updated if traversing 𝑥𝑛𝑒𝑤  costs less. 

∀𝑥𝑖 ∈ 𝑁𝑘(𝑥𝑛𝑒𝑤): 𝑖𝑓 𝑐(𝑥𝑛𝑒𝑤)+∥ 𝑥𝑛𝑒𝑤 − 𝑥𝑖 ∥< 𝑐(𝑥𝑖)
⇒ 𝑢𝑝𝑑𝑎𝑡𝑒 𝑝𝑎𝑟𝑒𝑛𝑡 𝑜𝑓𝑥𝑖  

(7) 

B. Reinforcement Learning (RL) Method 

The primary challenge lies in estimating the RRTstar 

function with a limited number of iterations, utilizing a 

floating-point value for each iteration. While RRTstar can 

identify optimal motion paths, its sampling process is 

characterized by inefficiency, as it does not leverage any 

information regarding the environment and fails to derive 

insights from previously solved problems. To address these 

limitations, the authors have incorporated a reinforcement 

learning framework into the RRTstar algorithm. This 

integration involves an Actor that determines the appropriate 

actions to take, while a Critic evaluates the effectiveness of 

these actions and provides feedback for necessary 

adjustments. The overall architecture of this enhanced 

framework is depicted in Fig. 3. 

 

Fig. 3. The architecture of RRTstar-RL algorithm 

This study diverges from the conventional approach of 

employing random sampling of points in RRTstar by utilizing 

a RL model to strategically direct sampling towards regions 

that exhibit a higher navigation completion rate. During the 

training phase, the model generates weight maps that 

correspond to the processed map data, thereby optimizing 

both path cost and computational efficiency. The RL model 

is predicated on three fundamental components: state, action, 

and reward. The state is defined as the input environment, 

which encompasses information regarding the starting point, 

destination, and obstacles. These elements are integrated into 

a corresponding dataset for both training and inference 

purposes, with each instance encoded as a tensor of 

dimensions (3, H, W). The action is conceptualized as a 

weight map, wherein each pixel represents the probability of 

sampling a point at its respective coordinates. The 

computational framework is constructed based on a normal 

distribution, denoted as N(μ, σ²), where: 

𝜇, 𝜎² = 𝐴𝑐𝑡𝑜𝑟(𝑚𝑎𝑝) ∈ 𝑅𝐻×𝑊 (8) 

In (8), the parameters of the normal distribution are 

processed through the Sigmoid function, resulting in a range 

of values between 0 and 1, thereby generating a probability 

map. The reward function is subsequently determined using 

the following formula: 

Reward = 1000 - Cost (9) 

A reward value of zero signifies the absence of a 

satisfactory path within the environment. The model consists 

of two primary components: the Actor and the Critic. The 

Actor is designed using the U-Net architecture, which is 

responsible for generating probability maps, or, in other 

terms, producing actions based on the given input. In contrast, 

the Critic utilizes the MobileNetV2 architecture to assess the 

current policy, or the weight patterns generated by the Actor 

(π) in relation to the attainment of the reward parameter. This 

dual structure enhances the model’s capability and efficiency 

in pathfinding within the environment. Unet is inherently a 

flexible model with input heads, accompanied by stable 

performance thanks to its symmetric architecture. The setup 

and customization with input data from the environment are 

highly valued. MobileNetv2 is specially designed for high 

speed and small model size, accompanied by minimal 

computational parameters. This architecture is suitable for 

accelerating the computation process and evaluating the 

effectiveness of the generated actions. From there, the 

optimal navigation process is selected. The evaluation 

process is conducted through the value function, as outlined 

below: 

𝑉(𝑠) = 𝐸𝜋[∑ 𝛾𝑡𝑟𝑡

∞

𝑡=0

] (10) 

where 𝑉(𝑠) is the value function at the corresponding state 𝑠. 

𝐸𝜋 is the average expectation under policy 𝜋 mapped from 

the state. 𝛾 ∈  [0,1) is the discount factor. The reward at state 

t is denoted as rt. The function 𝑉(𝑡) is calculated to compare 

the actual rewards, select the advantages (𝐴) and participate 

in calculating the Critic’s loss: 

𝐴 = 𝑅𝑒𝑤𝑎𝑟𝑑 − 𝑉(𝑡) (11) 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 2048 

 

Hoang-Long Pham, Hybrid Path Planning for Wheeled Mobile Robot Based on RRT-star Algorithm and Reinforcement 

Learning Method 

Therefore, the simulation of probability distributions and 

maps in the figure is illustrated in Fig. 4 and Fig. 5, 

respectively. 

 

Fig. 4. Probability map 

 

Fig. 5. The training scenarios in the dataset (above) and the trained weight 
maps (below). With a color scale from light to dark indicating accessible 

regions (light) and slow collision probability regions (dark) 

The correlation between values and optimal completion 

rates during the pathfinding process facilitates the rapid 

convergence of the RRT-star algorithm. The integration of 

learned data minimizes the formation of redundant and 

inefficient search trees. Ultimately, this leads to the 

identification of the optimal path from the initial point to the 

target destination. In conclusion, the authors employ a RL 

framework in conjunction with RRT-star, which offers 

significant advantages, including the reduction of inefficient 

sampling, the extraction of map features that integrate trained 

data into the pathfinding process within the environment, and 

an acceleration of processing time due to a decreased 

necessity for sample review. 

III. RESULTS AND DISCUSSION 

The experimental robot model is a three-wheeled mobile 

robot equipped with Lidar and computer, in Fig. 6. 

 

Fig. 6. Practical three wheeled mobile robot 

Utilizing the established and trained environment, the 

authors assess and contrast the trajectories produced by the 

proposed model with those generated by the RRTstar 

algorithm. The findings are presented in Fig. 7. 

 

Fig. 7. Comparison of the path results calculated from the proposed method 

(blue) with the RRT-Star algorithms 

Based on the probability of regions in the map, the 

proposed RRTstar-RL algorithm produces significantly 

shorter trajectories than the RRTstar algorithm. In Fig. 8, the 

paths generated based on the reinforcement learning model 

have an average length of 11.323 meters. While the 

experiments with RRTstar [61] have an average lenght of 

15.74 meters and the traditional RRT algorithm [62] has a 

length of 14.4 meters. It is clear that the proposed RRTstar-

RL algorithm produces paths that are closer to the ideal path 

than the unimproved approaches. In the cases of densely 

obstructed maps, RRTstar sometimes fails to find any path 

from the starting point to the destination while the proposed 

model almost does not record the cases of not finding a path. 

The authors conclude that the use of reinforcement learning 

combined with the RRTstar algorithm significantly improves 

the path finding efficiency in diverse environmental 

scenarios. Some potential and advantages of integrating the 

proposed method into path planning problems for 

autonomous systems, especially intelligent mechatronic 

systems [63], [64]. 

Visual analyses employing metrics such as computation 

time, path length, and optimality have been systematically 

conducted to demonstrate the superior performance of the 

proposed method. Notably, the optimization of computation 

time, particularly when utilizing pre-trained data, 

significantly accelerates the path-finding process. 

Specifically, the RRTstar-RL algorithm generates the optimal 

path 2.02 times faster than RRTstar and 1.6 times faster than 

RRT. Furthermore, improvements in path length have been 

empirically validated through comparative tables. Based on 

the referenced studies, the authors conclude that integrating 

reinforcement learning within the RRTstar framework 
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substantially enhances path finding efficiency across diverse 

environments, yielding shorter travel distances and 

significantly reduced computation times, while effectively 

optimizing parameter utilization. The reinforcement learning 

model processes 5.8 million parameters and directly outputs 

the optimal movement trajectory, a procedure considerably 

faster than traditional path planning algorithms that rely on 

exhaustive sampling and map-based path searches. 

Additionally, the relatively small computational footprint of 

RRTstar-RL facilitates its deployment on resource-

constrained systems with minimal computational overhead. 

 

 

 

Fig. 8. Comparison of the proposed RRT-star-RL algorithm with other 

methods based on the metrics: computing time, path length and optimality 

In order to enhance the accuracy of the proposed 

methodology, the RRTstar-RL algorithm has been developed 

to improve the efficiency of data processing within dynamic 

robotic environments. This algorithm is designed to 

effectively plan paths that ensure successful navigation to 

designated destinations while eliminating superfluous 

waypoints, thereby achieving the shortest possible path 

distance. Furthermore, the RRTstar-RL algorithm is 

integrated with a trajectory smoothing technique utilizing B-

spline, which contributes to the stability of the trajectory 

tracking process and minimizes the error associated with the 

three-wheel mobile robot’s turning angles, in Fig. 9. 

 

Fig. 9. The processing of the calculated trajectories is based on the proposed 

RRTstar-RL algorithm 

 Finally, to enhance the efficacy of implementing the 

petal-shaped complex trajectory tracking control process in 

practical settings. Fig. 10 illustrates that, utilizing the 

navigation plan derived from the proposed RRTstar-RL 

algorithm, the three-wheeled mobile robot demonstrates 

stable movement and precise navigation to each peak of the 

petal trajectory. This is achieved while maintaining stable 

trajectory tracking and minimizing error, as indicated by the 

black line during its motion. 

 

Fig. 10. Three-wheel mobile robot’s three-petal trajectory tracking process 

IV. CONCLUSIONS 

The paper proposes an efficient and optimal path planning 

approach for WMRs, which incorporates collision avoidance 

strategies and smoothing techniques to identify the most 

effective navigation route. The proposed hybrid path 

planning framework integrates an enhanced RRTstar 

algorithm with a reinforcement learning methodology. The 

path length achieved with the proposed algorithm decreased 

by 28% and 21% compared to the RRT and RRTstar 

algorithms respectively. Furthermore, the optimization of 
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computational time, particularly when utilizing pre-trained 

data, substantially accelerates the path-finding calculation 

process. Notably, the time required to generate the optimal 

path using the RRTstar-RL algorithm is 2.02 times faster than 

that of RRTstar and 1.6 times faster than RRT. Ultimately, 

the proposed RRTstar-RL path planning algorithm has been 

successfully validated for feasibility and effectively fulfills 

multiple objectives established during simulation and 

validation experiments. The challenges of optimizing the 

model to achieve fast inference speed, minimizing 

computational parameters are the premise for future jobs. 
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