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Abstract—Quadcopters are known for their maneuverability,
but their stability is often challenged in changing environments.
The PID parameters are adjusted manually so it is less adap-
tive. This research introduces the combination of Self-Tuning
Proportional-Integral-Derivative (PID) and Extended Kalman
Filter (EKF). A PID controller adjusts parameters based on
errors and state estimates obtained from the EKF in real time.
The disturbances used are Gaussian random disturbances on
the system and sensors, simulated a normal distribution using
the Simulink model. The basic PID parameters are determined
through numerical simulations, then adaptively calibrated with
a multiplier function based on estimation and error. The con-
tributions of this study are: (1) developing an EKF-based Self-
Tuning PID control for a quadcopter system; (2) demonstrating
an adaptive response to disturbances through simulations; and
(3) presenting an efficient tuning strategy suitable for resource-
limited systems. From simulation, z-axis overshoot is successfully
decreased from 7.37% to only 2.54%, while the steady-state error
remains low under system disturbances. Computational efficiency
is achieved because 12 state variables are controlled using a
single set of global PID parameters, and the tuning process
takes place in real time without relying on complex AI-based
optimization methods. The proposed control approach is able
to maintain trajectory tracking accuracy in three-dimensional
space adaptively and with efficient resource usage. These results
demonstrate that the EKF-PID method is effective for UAV
control in dynamic and disruptive environments.

Keywords—Self-Tuning PID; Extended Kalman Filter; Quad-
copter Control; Trajectory Tracking; Gaussian Disturbance

I. INTRODUCTION

The research of Unmanned Aerial Vehicles (UAVs) has
enhanced significantly, especially quadcopters [1]–[3]. Quad-
copters are systems that have 6 Degrees of Freedom (DOF) [4],
[5], where the system is flexible and has high maneuverability.
Therefore, quadcopters are widely applied in various fields,
one of which is the delivery of goods [6]–[8]. According
to [9], quadcopters are essential in modern logistics systems,
especially in delivering goods in urban areas where congestion
often occurs. However, the challenge that usually happens in
quadcopter maneuvers is maintaining the accuracy of position
and trajectory when environmental disturbances and changes

occur [1]. A quadcopter is a non-linear system with coupled
dynamics that requires high precision, so it is necessary to
choose the proper control method to obtain optimal stability
and performance.

PID is a conventional control that researchers often use to
control quadcopters [10]–[15]. PID provides ease in design
and implementation [16], [17]. These three PID controllers
help each other by combining the Ki, Kp, and Kd values
to obtain a stable output response and minimize oscillations at
the set point [18]. Research by [19] showed that PID stabilizes
quadcopters in introductory flight. However, the PID control
method has weaknesses in parameter tuning [20], resulting in
a limited ability to dampen disturbances in changing environ-
mental conditions [1]. Several studies have been conducted to
cope with the limitations of PID controllers. [21] optimized
PID control based on machine learning for parameter tuning.
[22] used an IBK-IFNN for PID parameter optimization. [23]
also combined PID with Extreme Learning Machines (ELM)
to track crack trajectories. Integration of PID and Machine
Learning is also used in [24]–[26]. Although these methods
can improve system response, they also have the potential to
increase computational burden. A high computational burden
without sufficient resources will be a challenge for lightweight
systems such as quadcopters.

Various variants of PID controllers have also been developed
in recent years, including sigmoid PID, BELBIC PID, and
neuroendocrine PID. The use of these approaches offers more
adaptive solutions, but in many cases, it is still not optimal for
real systems with limited computational resources.

In addition, recent PID tuning methods, as shown by several
recent studies [27]–[31], have demonstrated approaches based
on artificial intelligence and evolutionary optimization. How-
ever, these approaches still require complex optimization and
high computational duration. Therefore, a lighter, real-time,
and robust PID tuning method is still needed in the face of
external disturbances.

In addition to PID, several other control methods have
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been implemented on quadcopters by researchers. [32] applied
active fault-tolerant control (AFTC) by combining RL and
MPC for quadcopter trajectories with Actuator Errors. The
study validated the control by simulating trajectory tracking.
Although MPC can optimize motion based on the system
model, it is computationally complex [33], which can be a
constraint when applied to quadcopters with limited resources.
[34] used CDBF, CLF, and TCBF to control the trajectory of
Automated Vehicles, while [35] explored four variants of Slid-
ing Mode Control (SMC) compared with three conventional
controls to validate control tests for quadcopter trajectory
tracking. Fuzzy Takagi-Sugeno (T-S) modeling presented by
[36] demonstrated the efficiency of fuzzy control algorithms
for quadcopter tracking with additional computational load
analysis. Then, the methods of SMC and FSMC are compared
by [37] for on AUV.

In this context, we propose the Extended Kalman Filter
(EKF) and Self-Tuning PID combination as a method that
can provide accurate state estimation and perform automatic
control tuning. This approach overcomes the shortcomings of
PID and AI methods with high computational burden.

Research related to the Extended Kalman Filter (EKF) on
nonlinear dynamic systems has become the main focus of
many studies. The study aims to improve the accuracy of
estimation and control performance. [38] proved that EKF can
provide good speed estimation results, so EKF is suitable for
application in many fields, such as robots. The EKF also has
the ability to adapt and has resilience in managing nonlinear
systems [39] and handling disturbances and noise [40], [41].
Research by [42]–[44] combines fuzzy control and Kalman
filter. Study in [45]–[47] introduced a more adaptive control
using EKF to optimize fuzzy parameters and extract fuzzy
rules while [48]–[51] discuss fuzzy adaptive unscented Kalman
filter.

Research on control methods has been widely carried out
by experts before, but it still has shortcomings and needs to be
developed. Conventional PID has the advantage of producing
a stable response in a predictable dynamic environment. Still,
this method cannot adjust parameters automatically when en-
vironmental changes and disturbances occur. For MPC control,
this approach performs well in position and trajectory control
in a dynamic environment. However, the application of MPC to
systems with high processing capabilities is minimal due to the
significant computational cost. In applying the SMC technique,
behind its effectiveness in producing a robust control response,
this model still has a chattering effect that can interfere
with performance in specific applications. Fuzzy control, often
used to overcome high uncertainty, still has shortcomings in
setting fuzzy parameters to define optimal rules [45], [52]. The
method that has proven effective in improving state estimation,
especially under uncertain conditions, is EKF [53]. The EKF
approach is quite reliable, but real-time control adjustments

under disturbances using the integration of EKF with Self-
Tuning PID are still minimal. Hence, developing more adaptive
control on quadcopters is still wide open.

The approach used in this study offers a real-time parameter
adjustment process with minimal computational requirements.
The proposed method does not require a machine learning-
based iterative optimization process, but instead utilizes state
estimation from the EKF to dynamically calibrate the PID
parameters directly.

The key strength of this method is that it can control 12
state variables with only a single set of global PID parameters,
thereby reducing calculation complexity and the risk of inter-
actions between control channels. This study performs a con-
ceptual comparison of the computational burden between the
proposed method and commonly used AI-based approaches,
and shows that our method remains adaptive to disturbances
despite using more efficient computational resources.

Some important contribution points generated in this study
are: (a) Developing an EKF-based Self-Tuning PID controller
for a quadcopter system. (b) Demonstrating the adaptive
control performance against external disturbances through nu-
merical simulation. (c) Offers an efficient and less resource-
intensive PID tuning as an alternative to current commonly
used AI-based methods.

Organization of paper: Section I contains the introduction.
The control algorithm of Self-Tuning PID based on EKF
is explained in Section II. Next, section III provides the
simulations and the results to prove the effectiveness of the
quadcopter position and trajectory control. Last, section IV
presents the conclusion.

II. METHOD

PID control is a conventional control that has three basic
parameters, namely Ki, Kp, and Kd. In this study, PID
control is combined with EKF to automatically adjust the
three parameters. The Self-Tuning PID capability can improve
control performance because it is more adaptive in responding
to uncertain external disturbances. Self-tuning PID based on
EKF is designed through several stages. First, input signal
tracking is used to plan the position and trajectory. Sec-
ond, EKF accurately estimates the system state and distur-
bance. Third, the EKF Estimator is combined with the Linear
Quadratic Regulator (LQR) to obtain a more adaptive and
efficient control system in controlling dynamic systems with
high variability. Finally, PID effectively forms the variable of
control u based on the error in the state. Fig. 1 presents the
flow of the research methodology. The block diagram of the
theoretical architecture is illustrated in Fig. 2, while Fig. 3
shows its actual implementation in Simulink, which integrates
state space modeling, real-time state estimation, and adaptive
PID control.
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Position target input LQR generates
reference xref

EKF estimates
state x̂(t)

Error computation:
e(t) = xref − x̂(t)

Compute αp, αi, αd Adjust Kp, Ki, Kd
PID generates
control signal

Applied to
quadcopter system

Fig. 1. Flowchart of The Proposed Control Methodology

Fig. 2. Block Diagram of Self-Tuning PID based on EKF.

Fig. 3. Simulink Model of Self-Tuning PID based on EKF.
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The plant used in this control system is a quadcopter
with a 6-DOF dynamic model based on the Newton–Euler
formulation. This model combines translational and rotational
motions and is referenced from previously validated references
[54]–[58]. The algorithms of each method are explained in the
following sections.

A. Extended Kalman Filter

Kalman Filter is the estimator that minimizes the error be-
tween the estimated and actual values. By adding disturbance
and measurement noise, the stochastic model of the state space
is

ẋ = Ax+Bu+ wk, (1)

y = Cx+Du+ vk. (2)

The symbol wk indicates the disturbance in the system
representing the uncertainty of the model and vk is the symbol
of the measurement noise. With the Kalman Filter Estimator,
the in Equation (1)- (2) can be specified as follows

ˆ̇x = Ax̂+Bu+Kf (y − ŷ), (3)

ŷ = Cx̂, (4)

where x̂ is the estimated system state; y is output system
expressed in Equation (2); the ŷ notates the output of the
estimated state, and Kf is the Kalman gain.

EKF is designed to handle dynamic systems whose models
are nonlinear. In EKF, linearization is needed to obtain the
A and H matrices used to calculate the covariance [59]. EKF
works in two main steps, namely prediction and correction.
The prediction step is used to estimate the variable of state, and
the level of accuracy is calculated using the error covariance
equation. In the correction step, the estimated results of the
state variable are corrected using the measurement model. The
Kalman gain matrix is used to minimize the error covariance.
The predictions and corrections update steps will be repeated
continuously until the k time iteration. Based on [59]–[64] the
EKF algorithm is illustrated in Fig. 4.

LQR is an optimal control where the state equation is
linear, the function is quadratic, and the test conditions include
initial conditions without disturbance input [65]. The step
after estimating the system state is to calculate the optimal
control using the Linear Quadratic Regulator (LQR) method,
where the feedback control is obtained from the LQR. This
system applies LQR controller to generate optimal control
signals from the state estimation result. The combination of
EKF and LQR forms an optimal control architecture known
as Linear Quadratic Gaussian (LQG), which is capable of
handling nonlinear dynamic systems through accurate state
estimation and optimal control.

Then, feedback control is designed using state error and
integral feedback controller presented here [66]–[70]

u = −Krx. (5)

The gain Kr is the state feedback matrix gain. The feedback
gain Kr of LQR is obtained using the lqr() function in
MATLAB software, which solves the Riccati equation for a
system in linear state-space form ẋ = Ax+Bu by minimizing
the quadratic cost function [66], [71]–[73]

J =

∫ ∞

0

(
xTQx+ uTRu

)
dt. (6)

The weight matrices Q and R are determined based on
the priority between tracking precision and control energy
efficiency. With the state estimation obtained from EKF and
the optimal gain from LQR, the control system can provide
a fast, stable, and efficient response in the face of external
disturbances.

From the Equation (3)- (5), the new state space is obtained
as follows

ˆ̇x = (A−BKr − CKf )x̂+Kfy. (7)

In this system, the LQR is not used as the main controller,
but as a reference generator xref (t) for the PID controller.
The optimal trajectory is calculated from the linearized model
of the system, then used as a reference input for the PID-
EKF control system. Thus, LQR is used as a component in
the trajectory planning stage, not as a direct controller of the
actuator.

B. PID Parameter Tuning Strategy

PID control has strong performance under various operating
conditions and has a simple structure [74]. The PID algorithm
has three basic parameters, namely proportional, integral, and
derivative. That means the control operates with error, integral
error, and its derivative [18]. The PID parameter tuning process
in this study is carried out through two main stages to improve
control performance and system disturbance resilience. The
first step in PID tuning is done with iterative tuning based
on numerical simulation. The goal of this stage is to obtain
initial parameters that provide system stability at nominal
conditions before performing real-time adaptive tuning. The
PID controller structure used refers to this equationc [74]–[80]

u(t) = Kp e(t) +Ki

∫
e(t) dt+Kd

de(t)

dt
. (8)

To improve computational efficiency, the system uses a
single set of PID parameters to control all 12 state variables.
This approach is based on uniform sensitivity across variables
so that the use of global gain maintains control accuracy. The
more compact structure also reduces complexity and the risk
of cross-channel interaction.
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Fig. 4. EKF Algorithm Flowchart.

Even though the parameters used are global, the system
remains adaptive to disturbances and changing conditions and
is able to maintain good stability. The use of a single global
set of PID parameters was chosen for computational efficiency
reasons.

To maintain the performance of each channel and avoid
cross-interaction, the tuning process is carried out adaptively
through coefficients α that are dynamically adjusted to the
error characteristics of each channel.

The basic PID parameters used in this study are Kp =
2.7,Ki = 100,Kd = 0.0001 obtained through simulation and
evaluation of system performance against various disturbances.
These values were chosen because they provide an optimal
balance between rise time, overshoot, and stability, considering
the characteristics of a 12-dimensional nonlinear quadcopter
system and based on EKF estimation.

In the second stage, a real-time adaptive self-tuning mech-
anism is performed using error information obtained from the
Extended Kalman Filter (EKF). In this stage, the initial PID
parameters are recalibrated based on the system conditions
while running. The final values of the PID parameters are
formulated as

Kfinal
p = Kbasic

p · αp(t), (9)

Kfinal
i = Kbasic

i · αi(t), (10)

Kfinal
d = Kbasic

d · αd(t), (11)

where αp(t), αi(t), αd(t) act as an adaptive adjustment coeffi-
cient obtained from the deviation between the estimated state
by EKF and the expected reference value. The αj(t) value is
obtained from this equation

αj(t) = 1 + βj · |ej(t)|, j ∈ {p, i, d}, (12)

where ej(t) declare error at t and βj is the sensitivity con-
stant obtained through initial numerical simulations. Thus, the
control system can adjust its control parameters dynamically
to respond to disturbances or changes in system parameters.

This combined approach of offline numerical tuning and
online adaptive adjustment results in a robust and responsive
control strategy suitable for application to multivariable non-
linear systems such as quadcopters.

III. RESULTS AND DISCUSSION

The simulation have been designed to handle the stability
of the quadcopter. The target position and trajectory in this
study are circle on a horizontal plane. To obtain a more
accurate simulation, disturbance variables are involved. The
simulation data analyzed are angular position, angular velocity,
linear position, linear velocity, and trajectory tracking in 3-
dimensional space. The performance comparison between the
EKF-PID controller and the conventional PID, both under
undisturbed and disturbed conditions, is presented in Table I.
The system response of angular and translational are presented
in Fig. 5- 7, while the trajectory tracking is illustrated in Fig. 8.

The control performance improvements shown in Table
I stem from an adaptive tuning mechanism based on state
estimation by the EKF. When disturbances or dynamic changes
occur, the error value increases, and the adaptive coefficients
αp, αi, and αd are automatically adjusted to account for the
error. This enables faster and more stable control response
without the need for manual tuning or complex computations.
Thus, the improved performance in RMSE and computation
time is a direct result of integrating EKF estimation with real-
time PID tuning.

The improvement in system performance is closely related
to the implementation of the EKF, which has been proven to
maintain low RMSE values across all state variables. The accu-
racy of the state estimation from the EKF helps the PID adjust
its parameters according to the current system conditions. This
is supported by the data in Table I, where the average RMSE
values using the EKF-PID are each smaller than those obtained
from the conventional PID. This finding demonstrates that state
information from the EKF is an important foundation in the
parameter tuning process, resulting in faster response and more
accurate control in following the trajectory.

Fig. 5 shows the system response of the roll, pitch, and
yaw angular positions under disturbance. The Fig. 5a indicates
that the roll steady state remains low even though there is a
disturbance, which is 0.27%. It also happens on pitch position
on Fig. 5b which has only 0.07%. It means that the designed
controller can respond well to system dynamics. For the yaw
position, described in Fig. 5c, the overshoot increased from
0% to 22.66% when given a disturbance.
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TABLE I. COMPARISON OF EKF-PID AND PID

Variable Control Without Disturbance With Disturbance
Settling Time (s) Rise Time (s) ISE SSE Settling Time (s) Rise Time (s) ISE SSE

Roll
EKF-PID 14.97 0.00 1.5096 0.00587 – 0.00 1.5133 0.02325
PID 14.95 0.00 1.5888 0.00169 14.99 0.00 1.5961 0.01850

Roll Velocity
EKF-PID – 0.00 10.053 0.37230 – 0.00 10.4065 0.53881
PID – 0.00 11.7051 0.37203 – 0.00 12.1129 0.55162

Pitch
EKF-PID – 0.00 1.0293 0.37228 – 0.00 1.0666 0.42102
PID – 0.00 1.0340 0.37203 – 0.00 1.0797 0.42716

Pitch Velocity
EKF-PID 14.96 0.00 1.5089 0.00401 – 0.00 3.0535 0.15019
PID 14.94 0.00 1.5881 0.00017 – 0.00 3.0386 0.18043

Yaw
EKF-PID 2.03 1.13 0.06685 1.19e-13 – 0.79 0.08180 0.03940
PID 1.79 0.98 0.07288 1.74e-10 – 0.77 0.09084 0.04540

Yaw Velocity
EKF-PID 1.95 0.00 0.24877 2.29e-13 – 0.00 0.32437 0.12598
PID 1.94 0.00 0.24556 1.90e-14 – 0.00 0.29665 0.11544

X Position
EKF-PID – 0.90 75.2235 1.0502 – 0.92 77.0145 1.1613
PID – 0.88 73.4328 1.0482 – 0.90 75.1724 1.1613

X Velocity
EKF-PID – 0.00 91.5476 0.0759 – 0.00 92.8431 0.1315
PID 14.99 0.00 91.4677 0.0348 – 0.00 92.7979 0.0946

Y Position
EKF-PID – 0.76 86.5047 3.1329 – 0.84 86.7491 3.2004
PID – 0.77 84.5752 3.0918 – 0.84 84.8016 3.1579

Y Velocity
EKF-PID – 0.00 99.0573 3.6517 – 0.00 99.2904 3.7359
PID – 0.00 99.5099 3.6495 – 0.00 99.7535 3.7390

Z Position
EKF-PID 7.37 4.10 23.8126 0.00175 13.89 3.82 23.1818 0.02147
PID 7.62 2.85 34.6704 0.00099 14.41 2.67 33.7201 0.03712

Z Velocity
EKF-PID 6.49 0.00 7.9845 0.00092 14.92 0.00 7.8119 0.06719
PID 9.04 0.00 6.6685 0.00121 – 0.00 6.6704 0.09676

(a) (b) (c)

Fig. 5. Angular Position Response with Disturbance: (a) Roll, (b) Pitch, (c) Yaw.

The increased overshoot needs to be overcome by reducing
the initial fluctuation. However, the steady-state error of the
yaw position is excellent even though there is a disturbance,
which remains at a percentage of 0.06%, which indicates that
the control can maintain stability for a long duration.

The stability of the angular velocity is shown in Fig. 6. The
Fig. 6a shows a slight increase in the steady-state error of the
roll angular velocity, which is from 0.10% to 0.14%. Although
there is an increase in the roll angular velocity, the steady-state
error is still within the tolerance limit under the disturbance.
Fig. 6b present pitch angular velocity, which decreases from
0.36% to 0.18%. For the yaw angular velocity, illustrated in
Fig. 6c, it can be seen in the figure that the steady state error
is zero percent and only increases by 0.09% when subjected
to disturbance.

Linear position response to three axes is shown in Fig. 7.
Although the settling time of the x-axis increases when dis-

turbed, shown in Fig. 7a, from 0.28 seconds to 4 seconds,
the steady-state error remains at 2.71%. These results indicate
that the control system can achieve stability even though it
takes a little longer after the disturbance. While on Fig. 7b,
the steady-state error of the y-axis is reduced from 1.90% to
1.81% which proves that the system can adapt to changes in
disturbance. In on Fig. 7c, a significant decrease in overshoot
happens on the z-axis, from 7.37% to 2.54%. Besides, the z-
axis also maintains a small steady-state error, that is, 0.03%.
This decrease reflects that the control system has been optimal
in maintaining height. Furthermore, the steady state error of
linear velocity is low; the maximum value is 3.14%, which
occurs when the x-axis velocity is disturbed. The adaptive
coefficient αp(t), αi(t), αd(t) directly affects the control re-
sponse to disturbances when applied to the system. When
the deviation between the estimated state and the reference
is large.
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(a) (b) (c)

Fig. 6. Angular Velocity Response with Disturbance: (a) Roll, (b) Pitch, (c) Yaw.

(a) (b) (c)

Fig. 7. Linear Position Response with Disturbance: (a) x, (b) y, (c) z.

The value of α increases, resulting in rapid error correction.
This is evident from the decreasing in z-axis overshoot, from
7.37% to 2.54%. Furthermore, the yaw value remains stable
despite the Gaussian disturbances. Thus, real-time tuning by
means of α can reduce overshoot and maintain the precision
of trajectory tracking.

The quadcopter trajectory graph in three-dimensional space
is illustrated in Fig. 8. It shows that Fig. 8a simulates trajectory
tracking on three dimensions, which compares PID control and
self-tuning PID based on EKF without disturbance. While the
trajectory tracking with disturbance is described in Fig. 8b. In
this figure, the quadcopter can follow the trajectory according
to the desired reference despite interference. This performance
proves that the designed control system, namely the integration
of EKF estimation with PID parameter tuning, can respond
adaptively and robustly.

Previous studies have explored the integration of Extended
Kalman Filter (EKF) or fuzzy logic approaches in PID control
for UAV systems. [42]–[44] combined the EKF with a fuzzy-
based tuning scheme to improve control performance. How-
ever, this approach requires a relatively complex computational
process and a complex tuning process. In contrast, the system
proposed in this study uses a set of global PID parameters that
are adjusted in real time through an adaptive multiplier func-
tion based on the error and the EKF estimation results. With

this approach, simulation results show that the z-axis overshoot
is successfully reduced from 7.37% to 2.54%, and the steady-
state error at a fixed position is below 0.06 in simulation
units. In this study, the method is able to achieve competitive
performance without relying on data training processes or
AI-based optimization algorithms. This makes the proposed
method computationally lighter to implement in UAV systems
with hardware limitations. Based on the comparison results,
the EKF-PID shows an adaptive response and an accuracy in
following the trajectory.

The EKF-PID control approach successfully demonstrated
significant improvements in suppressing overshoot and main-
taining low steady-state errors, but performance on the yaw
axis still exhibited relatively larger oscillations compared to
other channels. This is because the yaw characteristic is more
susceptible to external disturbances and interactions between
rotational channels. The yaw fluctuation interferes with the
stability of direction. Therefore, more specific parameter tun-
ing focused on the yaw is needed to ensure reliability under
complex conditions.

Although no direct quantitative comparisons have been con-
ducted with other AI-based control or optimization methods,
the system is designed to be computationally efficient. This is
because it uses only a single set of global PID parameters to
control all 12 state variables.
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(a) (b)

Fig. 8. Trajectory Tracking on 3D: (a) Without Disturbance, (b) With Disturbance.

This approach eliminates specific parameter tuning for each
channel, reducing the computational burden, especially in
resource-constrained systems. This research was conducted in
a simulated environment with Gaussian noise representing sys-
tem and sensor noise. Other types of noise, such as permanent
bias, actuator delay, or aerodynamic turbulence, have not been
tested.

Furthermore, validation on a real UAV platform has not
been performed. Therefore, hardware testing is necessary in
future research. Some important results that prove the proposed
control effectiveness are

• The EKF-PID control system successfully reduced the
overshoot on the z-axis from 7.37% to 2.54%, as shown
in Table I.

• Under Gaussian disturbances, the average steady-state
error remains below 0.1 rad for roll, pitch, and yaw,
indicating system stability.

• Fig. 8 shows that the actual trajectory follows the set
point, with a maximum position deviation of < 0.15 m
on the x-axis and < 0.2 m on the y-axis.

• Although no runtime measurements have been performed,
computational efficiency is indicated by the successful
control of 12 state variables using a set of global PID
parameters, without an AI-based optimization algorithm.

IV. CONCLUSION

In this study, an adaptive quadcopter control system is
successfully developed by integrating a Self-Tuning PID con-
troller based on the EKF. The proposed method is able to
adjust control parameters in real-time based on the estimated
system state so that it can maintain high stability performance
even in changing environmental conditions or containing dis-
turbances.

Quantitatively, the EKF-PID system was able to reduce
the z-axis overshoot from 7.37% to 2.54% and maintain
steady-state position errors below 0.1 meters for all translation
axes. Based on the simulation, the RMSE values of x, y,
and z positions are 0.0527, 0.0491, and 0.0432, respectively.
Furthermore, there was a small oscillation in the yaw response.
However, the yaw response remained within tolerance limits.
It prove the successful of adaptive tuning for rotation.

The system’s computational advantage lies in the use of
a single set of global PID parameters for 12 state variables,
with adaptive tuning based on the EKF’s estimated error. The
number of blocks and simulation time indicate that the system
can run stably at real-time processing speeds in MATLAB
Simulink without overloading.

This method has the potential to serve as a foundation for
the development of state estimation-based adaptive control in
the future. However, this system is limited by oscillations
in the yaw channel and relies heavily on initial parameter
selection through numerical simulation. In addition, the types
of disturbances tested are still limited to Gaussian distributions,
so further testing on real disturbance scenarios such as wind
turbulence or load variations is recommended.
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