
Journal of Robotics and Control (JRC)

Volume 1, Issue 4, July 2020

ISSN: 2715-5072, DOI: 10.18196/jrc.1427 129

 Journal Web site: http://journal.umy.ac.id/index.php/jrc Journal Email: jrc@umy.ac.id

Mitigating Denial of Service Attacks with Load

Balancing

Adaoma Ezenwe1, Eoghan Furey2, Kevin Curran3
1, 2 School of Computing, Letterkenny Institute of Technology, Co. Donegal, Ireland

3 School of Computing, Engineering & Intelligent Systems, Ulster University, Northern Ireland

eoghan.furey@lyit.ie1,2, kj.curran@ulster.ac.uk3

Abstract—Denial of service (DOS) attacks pose a

tremendous risk to organizations. The attacks have

shifted from attacks at the layer 3 and layer 4 (network

level) to layer 7 attacks, which are not quickly detectable

by firewalls and utmost Intrusion Detection systems. An

accelerating number of those attacks against the

infrastructures of web servers of numerous organizations

has been reported. The research aims to investigate some

layer 7 application DOS attack tools and test open-source

tools that offer some defense against these attacks. The

research used open-source load balancing software,

namely HAProxy as the front line of defense against DOS

attacks to assess the effectiveness in detecting and

preventing layer 7 DoS attacks. We demonstrate how a

properly configured HAProxy can handle a variety of

DOS attacks in a much more efficient manner.

Keywords—DOS, attack, layer, load balancing HAProxy

I. INTRODUCTION

Denial of service attacks is a major threat to online

business infrastructures. The attack intended to shut down the

machine or cut off network connection. Symantec recorded a

vast number of online business attacks [1]. The attacks move

from the network layer, which requires massive resources and

great bandwidth to perform. An attacker operating from a

single appliance will submit massive traffic to overwhelm a

web server which makes the system inaccessible for other

authentic users. Most businesses have primarily relied on e-

commerce for the majority of their revenue and service

provision. The attacks continue to be a major threat to the

network of online business.

Some companies rely on social media sites for advertising

and direct customer contact. A reduction of quality of the

service will cost money to some businesses [3]. The danger

of DoS attacks on online companies is rising equally. In 2016,

the largest DOS attack scale ever reported, was performed on

DNS provider, Dyn, utilizing botnets infected with Mirai's

Internet of Things (IoT). The attack hit major websites

including PayPal, Facebook and Netflix. Sometimes, such

attacks are utilized as distracting tactics to distract

concentration from other cyber-attacks, which contribute to

the data-stealing. Verisign reported a 75 % increase in the

pattern of Layer 7 DOS attacks across all verticals of business

[4]. Given the growing prevalence of the attacks, the work

seeks to use open source software as well as tries to explore

how resources can support to detect and deter a DoS attack as

well as allowing post-event threat analysis. An HAProxy is

an open-source platform for load balancing and defense

mechanisms against DOS attack from Layer 7. Two attacks,

namely the HTTP GET and HTTP POST are common as they

manipulate a function of the HTTP protocol that leave the

connection open while waiting for the web server receives the

legitimate HTTP full request [5].

Attackers take advantage of such a vulnerability to block

system resources that other legitimate web application

consumers are denied access to the client because threads, full

link sockets, and other device resources are left open to

unscrupulous attackers. The researchers are trying to see

whether HAProxy can be used to protect against a DOS attack

and discuss the potential of the open-source platform, ELK

Stack, in providing real-time data log reviews as well as

warning approaches when a server is going down or when an

attack is going on by monitoring device and logging

information in near real-time.

Denial of service attacks (DOS) is where infrastructure

and services for legitimate users are rendered. The DDOS

(Distributed Denial of Service) attack is an enhanced variant

of DOS, where several infected devices are hired for the

attack [6]. The DDOS is a sophisticated type of DOS, where

bots comprising corrupted networks or computers, are

involved instead of a person or a specific device perpetrating

the attack. These bots or Botnets are set up by leveraging the

inherent weaknesses of computer systems and operating such

systems in a coordinated broad-scale attack on target systems

[7]. These attacks have potential consequences such as

service interruption, network unavailability, and may result

in data failure being triggered to user device resources

[8]. Distributed DOS attacks have lately become one of the

biggest threats to the stability and security of the networks

and web services [9]. These attacks involve the attacker's

immense bandwidth and resource that is challenging to

arrange, excepting the case of an individual's HTTP flood

attack or using a tiny botnet [10]. Another approach would be

to identify the attacks based on the targeting of the network

layer, primarily the Network/Transport layers as well as the

application layers. The classification of the attacks can be

based on the attack's resource target, primarily Bandwidth

Usage and Use of Server Resources [11]. One means of

categorizing DOS attacks is through the mode of attack either

reflector/amplification attack or direct attack [12].

The seventh layer of the OSI model is the application

layer. It concerns how the user primarily communicates with

http://journal.umy.ac.id/index.php/jrc
mailto:jrc@umy.ac.id

Journal of Robotics and Control (JRC) ISSN: 2715-5072 130

Adaoma Ezenwe, Mitigating Denial of Service Attacks with Load Balancing

the HTTP(S), SMTP, FTP, a protocol stack, etc. [13].

Because of the existence of the layer that allows direct user

interaction, attackers can bring down a website by sending

repeated queries, continual reloading and demanding details

from the database that may or may not exist. DOS attacks

against web applications have been becoming more common

with layer 7 GETs and POST attacks amongst the latest

techniques of DOS attacks [8] claiming to be very

complicated methods for DOS attacks at the application

layer. Standard DOS identification and prevention methods

are ineffective for these Layer 7 attacks [12] as in application

layer DOS attacks. Compromised devices submit high

volume pernicious database service requests via regular TCP

connections to the target web servers [9]. The attacker aims

to constantly requesting a heavy URL from the victim in

order to drain the target's computing resources. This layer

attacks are typically more complex and have more damage on

the victim's computing capital while costing very little

money to the attacker to perpetrate the attack [14].

The HTTP Post attack is powerful and effective,

occurring when an intruder infiltrates the webserver with

gradually abounding data inside the request body of the

HTTP Post. Because it is an HTTP protocol-compliant

request, it has to keep the connection open while the attacker

drains the resources, leaving the web application unavailable

to legitimate site users [14], [8]. The attacker sends the

request header rapidly and defines the size of the message

body that the web application will anticipate. The intruder

subsequently sends the full HTTP header info allowing the

contact appears quite valid but later sends the message body

thousands of already established connections at a rate of one

byte per 100 seconds. The intruder makes the request-transfer

rate incredibly slow, and this hogs the web-server's memory

power and CPU, irrespective of the hardware capacity of the

web-servers, as it awaits complete data transmission before

the link is closed [15]. HTTP GET queries occur when a user

enters a URL in the web-browser's address bar and clicks the

enter button or when a web-application user seeks hyperlinks

in a web application.

The HTTP Get attack imitates the behavior of

website's genuine users, but the intruder sends an abundant

HTTP Get requests by means of botnets or other methods to

make the application inaccessible to legitimate users. Such

requests are usually identical with the standard

HTTP request-bar. It is difficult to distinguish such attacks

because the requests are typically sent through valid network

packages, standard TCP link, and request the web legitimate

content [16]. Popular defense mechanisms detecting and

filtering DOS traffic on the basis of the illegitimacy of the

request and the request rate are ineffective in mitigating this

form of attack [17], [18]. This is because "the traffic to the

attacker is as legitimate as the traffic to normal users"[19]. A

sample of such attacks is HTTP GET slow read request

attack, commonly referred to as the Slow READ attack. The

attacker continually hits the web servers with requests, which

leaves the connection open, resulting in the waste resources-

memory of the client, CPU time [10].

Prevalent load balancers like F5 and Cisco may be

utilized to protect against HTTP GET DOS attacks [20], [21].

A load balancer accommodating a large number of requests

and communications from a large number of users and

devices is important [22]. HAProxy standing for the High

Availability Proxy is a prevalent HTTP load balancer and

open source TCP [23]. It provides several solutions for load

balancing algorithms and conducts back-end server health

checks before it routes traffic to only stable nodes [23].

ackend server status and incoming and outgoing traffic detai

ls may be evaluated using the Details method (Figure 1).
HAProxy creates logs that can help uncover which program

causes a problem in one event. It may operate in TCP mode,

testing whether databases such as MySQL server are

running and in HTTP mode.

Fig. 1. Frontend and Backend layers of HAProxy

The backend of the HAProxy consists of one or several

servers, to which requests submitted are delivered. Backend

setup consists primarily of web servers, HAProxy ports for

listening, a health check system, a load balancing algorithm,

and several other specialized configurations. The frontend

specifies the front end's port number and IP address, some

ACLs and other specialized settings.

High Availability is the capacity of a program striving to

achieve a more advanced output including uptime. Such

function uses an active failover program which cuts

downtime for a business [24]. A high-availability system

ensures that errors are found when arising and measures are

set to minimize those errors, and confirms that there is no

single point failure in the entire system so that the user never

suffers down-times. There are various formulas that calculate

the amount of downtime and each company determines what

degree of downtime is appropriate on the basis of service

level agreements (SLAs). Most systems have security

susceptibilities that hackers may leverage to trigger denial of

service functionality for legitimate device customers, and

sometimes result in server downtime. In a production

environment, a simple advantage of HAProxy provides users

with a high availability when correctly installed, and backend

nodes are allowed to be withdrawn or introduced to the

HAProxy with no down-time [23]. Failover is the system's

ability to stay working while one or more of its elements are

down.

 HAProxy gives the capability to designate web servers as

backups, and when main web-servers go down, the backups

are restored into an active pool. By announcing the option "all

backup in configuration file". The backup server farms may

be linked to the active HAProxy pool [25]. This server is

designed to be failover farm when all servers are down. When

Journal of Robotics and Control (JRC) ISSN: 2715-5072 131

Adaoma Ezenwe, Mitigating Denial of Service Attacks with Load Balancing

all active and backup services are inaccessible, it is important

to use a personalized error page to inform consumers on

efforts to restore service [26]. HAProxy facilitates load

balancing algorithms like Round Robin, and more

complicated algorithms like Least Link Origin, IP Hash, URL

Hash, and Weighted-RR.

ELK Stack is a grouping of three open-source resources,

namely Elasticsearch, Logstash, and Kibana. Elasticsearch is

Apache Lucene project-based text indexing and search

engine application for profound searches, queries, and data

analysis [27], [28]. Kibana is the ELK Stack's visualization

portion. It offers graphical displays of data retrieved from

the Elasticsearch and offers the ability to easily view vital

info probably mix up with big data.

II. EVALUATION

The attacker connects to the HAProxy server’s IP address

through the' internet'. The HAProxy server collects traffic via

its frontend and afterwards allocates the traffic to the web

server’s backend. The logs stored on the HAProxy server is

sent by means of Beats log shipping tools, namely Metricbeat

and Filebeat to ELK server. Figure 2 illustrates the system

architecture.

Fig. 2. System architecture

HAProxy is installed on a server that handles data from

web users and loads the data as a first line of defense against

DOS attack in order that unexpected large surges in HTTP

traffic flows do not overload the backend servers. The

HAProxy server consists of a frontend in which all access to

the backend servers is reached first, and the backend

HAProxy service is connected to the backend web servers

later. A load balancing helps remove single point of failure in

a system to help recognize errors and differentiate

malfunction component faults. The HAproxy load balancer

allocates the traffic to the backend servers according to the

designed load balancing formula, and it eliminates the simple

bottlenecks in the HTTP traffic. To assist with replication,

HAProxy enables server setup as an active-backup (failover)

in the case of one or more of the main servers crashing. The

configuration is designed where the administrator considers

it crucial to put a another server into the load-balanced servers

active pool to deliver another layer of DoS attack protection

once the main servers have been marked down. The

Elasticsearch, Logstash, and Kibana, installed on the ELK

server are utilized for distributed storage, data processing, log

review, as well as log virtualization. To create DOS attack,

GoldenEye DoS attack tool is used, and the attack traffic is

forwarded from the HAProxy server to the ELK server for

review. The HAProxy statistics page gathers and analyzes the

event logs created throughout the DOS attack to identify

patterns that can be used when the alarm is activated when

such an event takes place. The HAproxy service collects data,

utilizing the required load balancing algorithm to disperse the

traffic to backend servers.

To evaluate the effects of the DOS attack and build a test

for evaluating the efficacy of the load balancer and its

security measures, the DOS attack was experimented on two

web servers operating the Apache to see whether the result is

equivalent on both. Similar experiments were performed on

the server operating a standard setup to monitor the results of

the attack without having to implement extra security

mechanism to help mitigate the DOS threat. Lastly,

the HAProxy server is safe for DOS, and the same

experiment is undertaken to seeing the efficacy of DOS

security settings to prevent DOS attacks. Using the

GoldenEye DOS attack method, HTTP traffic was sent to

web servers through the server’s IP address to generate

adequate traffic to analyze the log.

SlowHTTPTest was used to test a Denial of Service

Attack at Layer 7 implemented on the Slowloris attack, Slow

POST attack, Slow READ attack, and Apache Range Header

attack. The attack length was 240 seconds by default, and the

connections listed is 1000 with 200 connections per-second

for all the tests. It used default content header length of 4096.

The timeout probe was 3 seconds with a 10-second period

between launch of the attacks. The attack tool determined the

follow-up data size for the HTTP POST attack, slow BODY

attack, and the Extra data max length in the case of Slow

HTTP headers attack based on the default configuration.

Experiment 1: Attack directly on Web server using

slowhttptest

Experiment 1 aimed to determine what effect it would

have to submit massive number of queries directly to a web

server without using a load balancer and to evaluate if the

balancer offers some level of security toward the DoS attack

relative to the launching of the attack. The experiments

conducted on both web servers without using a load balancer

displayed comparable results. The web servers did not

recover from the Slowloris attack until the maximum attack

time limit 240 seconds.

Fig. 3. Graph showing the status of the connection

Journal of Robotics and Control (JRC) ISSN: 2715-5072 132

Adaoma Ezenwe, Mitigating Denial of Service Attacks with Load Balancing

Fig. 4. Graph slowing the READ attack directly on the web server

We performed a slow BODY/slow POST attack against

the web servers using a fake HTTP request term,

CHECKVERB, and parameter to the targeted web server,

VM1 while also encountering the attack on the web servers.

The attack sent a 10000 content-length values but sent out 22

per 110 seconds. It made busy web server resources. After the

5th second, the webserver was unable to provide any service,

and the system finally crashed at the 110th second, finish the

attack with Connection's exit status-declined (see Figure 3).

The final experiment was the sluggish READ attack aimed at

the webserver. The attack enabled 1000 valid HTTP requests

per second and a 10 to 20-second receive window range. It

read the response at around 6 to 7 bytes per second.

Figure 4 displays the specifics of the test parameters

applied during the attack and shows the status

representation of the 1000 connections over the course of the

attack. The web server attached for 223 requests but kept

pending the remining 777 requests. Service became

inaccessible at the 10th second and during the subsequent 230

seconds, 270 connections were enabled. A total of 730

connections were closed at the 240th second. The service

became inaccessible during the 10th second and the

remaining seconds of the attack.

Experiment 2: Attack on Web Servers via Basic

HAProxy Server

Experiment 2 was carried out using load balancer but

rendered without any DOS protection configuration settings.

The first test applied on the unsecured HAProxy server was

the Slow Header/Slowloris attack. The same research criteria

were used in the study. The HAProxy server recorded time-

length of the attack, 240 seconds. Figure 5 displays the

parameters and the graphical depiction of the attack over the

entire time of the experiment. To obtain a benchmark to

evaluate the efficacy of the HAProxy's security settings in

preventing the Slowloris attack, the number of the

connections was increased to perceive its impact on the

HAProxy server. The service identified by HAProxy attack

stopped working at the 10th second but recovered att the 15th

second. After the attack stopped, 1664 connections had been

successful while 336 connections were closed. Figure 6

shows the connection status till the time limit of the attack.

Fig. 5. Graph displaying the connections for the slow header attack on the

HAProxy server

Fig. 6. Graph displaying the result of 240s of Slowloris attack on the

unsecured HAProxy

A fake Body/Slow POST attack was performed using a

fake HTTP verb (CHECKVERB). The service became

inaccessible at the 10th second but recovered at the 55th

second. Nonetheless, the server was unable to take any new

connections at 70th second. The load balancer recorded a

status of No Open Connection Left though the available

service and no web servers crashed due to the overload.

Graphical illustration of the connection status through the

course of the attack was displayed in Figure 7.

Fig. 7. Graph displaying Slow body attack on the unsecured HAProxy

Journal of Robotics and Control (JRC) ISSN: 2715-5072 133

Adaoma Ezenwe, Mitigating Denial of Service Attacks with Load Balancing

Fig. 8. Graph of the service availability for the duration of the attack

The final test on the unsecured HAProxy server is the

slow READ attack. The number of receiving windows in the

attack was 10 -20, and the read rate was 6 to 7 bytes per

second. After 5 seconds of testing, if the server is active, the

attack device re-coordinates and relaunches the attack. The

HAProxy recorded service inaccessible at the 10th second but

retrieved at the 30th second. Nevertheless, the retrieval did

not last because the service fluctuated several times within

the first 80 seconds. However, it was restored at the rest of

attack time-duration.

To restore the service, the system was rebooted.

The HAProxy with the basic configuration showed high

flexibility during the Slowloris attack relative to slow POST

and slow READ attack. Service availability of the Slowloris

attack was 100% when 1000 connections were used per

second, but when the connection rate per second was

doubled, 17% of the connections were decreased.

Nevertheless, for 95% of the attack time-period, the service

was constant. With the default setup, the HAProxy server

was unable to provide service for about 35% of the attack

time-period. Approximately 830 connections were retained

while the remaining 170 connections were discarded. The

worst result was for the slow POST attack. The service was

inaccessible for 45 seconds out of the 70 seconds. Yet, all

accessible connections were depleted at the 70th second.

The result of the experiment found that web servers could

only sustain the service for less than a fixed time of 10

seconds when directly attacked. A server crash was reported

while the launch of attack on the web server. The HAProxy

showed better handling for the Slowloris attack compared to

the other attacks.

Experiment 3: Attack on Web Servers Via Secure

HAProxy Server

The HTTP-request timeout was set for five seconds to a

suitable number to avoid the Slowloris attack. After applying

the security settings to the HAProxy config file, we carried

out the Slowloris attack. The corresponding Attack Order was

released on the secured HAProxy server. The attack persisted

within 10 seconds. The test finished on 11th second with a

status of no open connection remaining, but the service was

reported available. The warning of no available connections

remaining was validated to apply only to the attacker's

connections. Separate connections made from another device

suggested that connections and the service were still

accessible. Figure 9 displays that all connections after five

seconds were closed because the config file was set up with

a connection timeout of five-second if a full request is not

received.

Fig. 9. Graph shows that all connections after 5 seconds were closed

Later, we carried out a Slow BODY attack and Slow

READ attack, launched on the secure HAProxy server. The

Slow BODY attack lasted for about 10 seconds. The server

recorded no open connections remaining at the 10th second

of attack. The service was only inaccessible to the attacker

but still accessible for all other users. The Slow READ attack

sent a 10 to 20 receive window but read at the rate of 6 to 7

bytes per second. The attack continued for 240 seconds, and

the service was inaccessible for merely five seconds. The

HAProxy server closed 980 connections requests on average

and connected 20. During the attack, the connection cut after

the 35th second but recovered at the 40th second. It was

similar to the previous attack. The secure HAProxy server

was capable of handling the Slowloris attack. The attacker's

connections were effectively restricted to the limits

configured in the configuration file. All connections to the

ongoing attack were closed.

III. CONCLUSION

This paper delved into layer 7 attacks with a focus on

slow BODY, slow POST, and slow READ attack techniques.

When a web application traffic is directly redirected to a web

server, it exposes a single point of web infrastructure's failure

and is not a sensible method given the current patterns, in

which daily continuous traffic to the web applications has

become so critical. The reasoning behind all these methods is

the use of modules integrating dynamic-scheduling

mechanism to dynamically assign backend servers to

handle incoming requests in the list of queues with various

priority levels. This method proved ideal both for load

balancing and for avoiding DOS attacks. Such a method has

proven to be proper for load balancing as well as for

preventing DOS attacks.

The improvement of the HAProxy's security has created

a significant performance enhancement. Connection to a web

application is denied to an attacker based on the traffic

patterns which he presents. A usual web application user does

not open 2000 connections in a second and 200 simultaneous

connections. HAProxy senses this feature, and then prevents

the attacker. The implementation of the time-out of an HTTP

Journal of Robotics and Control (JRC) ISSN: 2715-5072 134

Adaoma Ezenwe, Mitigating Denial of Service Attacks with Load Balancing

request and putting buffer size's limitation stops the slow

POST attack from consuming backend web server resources.

It is reasonable to configuring a free open source and a

lightweight load balancing algorithm to improve

performance, high availability, and simultaneously function

as the first powerful layer of protection against the DOS

attack. Ultimately, using preference manager modules along

with several buffer queues with different priorities may assist

filtering and sorting incoming requests. according to different

priority levels depending on the authenticity of the

request's sources or the irregular existence of the request

traffic.

REFERENCES

[1] Symantec, “Internet Security Threat Report (ISTR)”, 2017.

https://www.symantec.com/content/dam/symantec/docs/reports/istr
-22-2017-en.pdf

[2] Masdari, M.; Jalali, M., “A survey and taxonomy of DDoS attacks

in cloud computing”. Secure Communication Networks, Vol. 9, No.

1, pp:3724–3751, SCN-15-0746.R1, 2016.

[3] Vlajic, N. and Slopek, A., “Performance and economies of ‘bot-less’
application-layer DOS attacks.” The 9th International Conference

for Internet Technology and Secured Transactions (ICITST-2014).
2014, DOI: 10.1109/ICITST.2014.7038828, 8-10 Dec 2014,

London, UK,

[4] Verisign, “Distributed Denial of Service Trends Report”.

Verisign2017. https://www.verisign.com/en_GB/security-
services/DOS-protection/DOS-report/index.xhtml

[5] Bonguet, A., Bellaiche, M., “A Survey of Denial-of-Service and

Distributed” Denial of Service Attacks and Defenses in Cloud

Computing. Future Internet 2017, 9(3), 43, 2017;
doi:10.3390/fi9030043

[6] Santanna, J., Rijswijk-Deij, R., Hofstede, R., Sperotto, A.,

Wierbosch, M., Granville, L. and Pras, A. “Booters — An analysis

of DOS-as-a-service attacks.”, 2015 IFIP/IEEE International
Symposium on Integrated Network Management (IM). 2015 DOI:

10.1109/INM.2015.7140298, 11-15 May 2015, Ottawa, Canada,

[7] Merouane, M. “An approach for detecting and preventing DDOS

attacks in campus.”, Automatic Control and Computer Sciences,
January 2017, Volume 51, Issue 1, pp 13–23, 2017

[8] Mahadev, A., Kumar, V. and Kumar, K. “Classification of DDOS

Attack Tools and Its Handling Techniques and Strategy at

Application Layer.”, International Conference on Advances in

Computing, Communication, & Automation (ICACCA), 30 Sep – 1

Oct 2016, 2016, DOI: 10.1109/ICACCAF.2016.7749002,

[9] Sree, R., Bhanu, S. “HADM:detection of HTTP GET flooding

attacks by using Analytical hierarchical process and Dempster–
Shafer theory with MapReduce. Security and Communications

Networks, Vol. 22, No. 1, pp.4341-43574, 2016.

[10] Park, J., Iwai, K., Tanaka, H. and Kurokawa, T. “Analysis of Slow

Read DoS Attack and Countermeasures on Web servers.”,
International Journal of Cyber-Security and Digital Forensics, Vol.

4, No. 2, pp.339–353, 2015. http://dx.doi.org/10.17781/P001550

[11] Srivastava, R., Verma, A., Hussain, S. An Approach for Load

Balancing Among Multi-Agents to Protect Cloud Against DDos
Attack.”, International Journal of Computer Trends and Technology

(IJCTT), Vol. 9 , No 5, Mar 2014. ISSN: 2231-2803. Pp: 217-228,

2014.

[12] Fouladi, R., Kayatas, C. and Anarim, E. (2016) Frequency based
DDOS attack detection approach using naive Bayes classification.

2016 39th International Conference on Telecommunications and

Signal Processing (TSP). June 27-29 2016, Vienna, Austria, DOI:
10.1109/TSP.2016.7760838

[13] Modiri, N., “The ISO reference model entities.”, IEEE Network,

[online] 5(4), pp.24–33, 1991. DOI: 10.1109/65.93182.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=93182

[14] Hirakawa, T., Ogura, K., Bista, B.B. and Takata, T.,.” A Defense
Method against Distributed Slow HTTP DoS Attack.” 2016 19th

International Conference on Network-Based Information Systems

(NBiS), 2016, 7-9 Sep 2016, Ostrava, Czech Republic, DOI:
10.1109/NBiS.2016.58

[15] OWASP. “Application Denial of Service.” OWASP White Paper,

2010, March 2010

https://www.owasp.org/index.php/Application_Denial_of_Service

[16] Chwalinski, P., Belavkin, R. and Cheng, X, “Detection of

application layer DDOS attack with clustering and likelihood

analysis.”, ModGlobecom 2013 Workshop - First International

Workshop on Security and Privacy in Big Data, Atlanta, USA, 2013
DOI: 10.1109/GLOCOMW.2013.6824989

[17] Oikonomou, G. and Mirkovic, J. “Modelling Human Behaviour for

Defense Against Flash-Crowd Attacks.”, 2009 IEEE International

Conference on Communications, 2009. DOI:
10.1109/ICC.2009.5199191, 14-18 June 2009, Dresden, Germany,

http://ieeexplore.ieee.org/document/5199191

[18] Bekeneva, V., Shipilov, N., Borisenko, K. and Shorov, A.

“Simulation of DDOS-attacks and Protection Mechanisms against
Them.” Young Researchers in Electrical and Electronic Engineering

Conference (EIConRusNW), 2015 IEEE NW Russia. 2015,

Available at: http://ieeexplore.ieee.org/document/7102230/.

[19] Tang, C., Lee, E., Tang, A. and Tao, L. “Mitigating HTTP Flooding
Attacks with Meta-data Analysis.” 2015 IEEE 17th International

Conference on High Performance Computing and Communications

(HPCC), 2015 IEEE 7th International Symposium on Cyberspace
Safety and Security (CSS), 2015.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=733636

5.

[20] Ahmed, A., Sadiq, A. and Zolkipli, M. “Traceback model for
identifying sources of distributed attacks in real time.” Security and

Communications Networks, Vol. 44, No. 2, pp.2173-2185, 2016..

[21] Kaur, P., Kumar, M. & Bhandari, A. “A review of detection

approaches for distributed denial of service attacks,” Systems
Science & Control Engineering, Vol. 5, No. 1, pp: 301-320, 2017.

doi:10.1080/21642583.2017.1331768

[22] Hou, L., Zhao, S., Xiong, X., Zheng, K., Chatzimisios, P., Hossain,

M.S. and Xiang, W. “Internet of Things Cloud: Architecture and
Implementation.” IEEE Communications Magazine, Vol. 54, No.

12, December 2016, 2016. DOI:

10.1109/MCOM.2016.1600398CM

[23] Kaushal, V., and Bala,M.. “Autonomic Fault Tolerance Using
HAProxy in Cloud Environment.” International journal of advanced

engineering sciences and technologies, Vol No. 7, Issue No. 2, pp:
222 – 227, 2010.

[24] Sun, J., Dong, X., Zhang, X., Gong, W. and Wang, Y. “High

availability analysis and evaluation of heterogeneous dual computer

fault-tolerant system.” 2014 IEEE 5th International Conference on
Software Engineering and Service Science, 2014. DOI:

10.1109/ICSESS.2014.6933605, 27-29 June 2014, Beijing, China,

[25] HAProxy, “Failover and worst case management with HAProxy”,

2013. https://www.haproxy.com/blog/failover-and-worst-case-
management-with-haproxy/

Journal of Robotics and Control (JRC) ISSN: 2715-5072 135

Adaoma Ezenwe, Mitigating Denial of Service Attacks with Load Balancing

[26] Lassnig, M., Vigne, R., Beermann, T., Barisits, M., Garonne, V. and

Serfon, C. “Scalable and fail-safe deployment of the ATLAS
Distributed Data Management system Rucio.” Journal of Physics:

Conference Series, 12 May 2015, pp: 140-148, 2015.

https://cds.cern.ch/record/2015469/files/ATL-SOFT-PROC-2015-
023.pdf

[27] Oliverira, R., Ferreira, D., Ferreira, R., Cruz-Correia, R. “Open-

Source Based Integration Solution for Hospitals. Computer-Based

Medical Systems (CBMS),” 2016 IEEE 29th International

Symposium, Open-Source Based Integration Solution for Hospitals,

2016. DOI: 10.1109/CBMS.2016.44,

[28] Smith, G. “Log Analysis with the ELK Stack.” LinuxFest North
West Blog. October 11 2016, 2016.

https://www.linuxfestnorthwest.org/sites/default/files/slides/Log%

20Analysis%20with%20the%20ELK%20Stack.pdf.

