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Abstract—Fault diagnosis is an important issue in industrial 

processes to avoid economic losses, process damage, and to 

guarantee safe working conditions for the operators. For high 

scale industrial processes the data-driven based methods are the 

best solution for process monitoring and fault diagnosis. Thus, 

in this paper, the principal component analysis is shown to 

detect and isolate faults. Also, a dynamic threshold is 

implemented to avoid false alarms because incipient faults are 

difficult to be detected. As a case of study, the Tennessee 

Eastman (TE) process is used to apply this strategy because the 

interaction among five units with internal control loops makes 

difficult to have an approached model. As results are shown the 

detection times, for cases where were analyzed incipient faults, 

the time required for fault detection must be improved, in this 

work, an adaptive threshold was used to reduce the false alarms 

but it also increases the detection times. It was concluded that 

the Q chart gave a better result for fault detection; the isolation 

times were similar to the detection ones. Two incipient faults 

could not be detected, the fault detection rate was similar to the 

shown in literature, but the detection times were better in 35% 

of the cases, unfortunately for four faults the detection times 

were bigger than the reported in other papers. It is proposed to 

help this method with independent component analysis due it is 

not guaranteed to have a Gaussian distribution in the samples.  

Keywords—Fault detection, PCA, incipient faults 

I. INTRODUCTION 

In industrial processes the variables monitoring is a 

common way to determine the process healthily, nowadays it 

is common to have a high level of automation and data 

acquisition systems like the SCADA; in this way, the 

historical data are available. Thus, a data-based method for 

fault detection and isolation (FDI) is a good option; the 

common strategies use statistical analysis [1-3] to evaluate 

the signals to look for anomalous behavior. 

An approached model can be difficult to propose for large 

scale industrial processes as in the conclusions of [2] was 

indicated. In this way, the Hoteling statistic 𝑇2 and the square 

prediction error (SPE) are used here for FDI [3].  

The fault detection consists of awareness regarding the 

occurrence of a problem in the process [1]. And the 

recognition of the event that occurred is the fault isolation [4]. 

When both activities are developed is common to find the 

concept of fault diagnosis [5]. 

A statistic method for FDI commonly used is the principal 

component analysis (PCA), for example, in [6] is employed 

the PCA to detect anomalies in synchronous generators by 

using a threshold obtained with the 𝑇2 chart. Hierarchical 

PCA was used for fault detection due to sensors degradation 

in [7]. Also, a combination between ANFIS and PCA can be 

found in [8] for fault diagnosis in the Tennessee Eastman 

process. Multiscale PCA-based fault detection for the same 

process was shown in [9].    

The Tennessee Eastman (TE) process is an industrial 

process originally developed in [10] to evaluate fault-tolerant 

control strategies and FDI methodologies. This benchmark is 

widely used due to the number of variables and faults that can 

be simulated, for this process is difficult to propose an 

approach model to have a model-based FDI. This chemical 

process has five principal units: a chemical reactor, a product 

condenser, a recycle compressor, a liquid-vapor separator, 

and a product stripper [11]. The TE process has 41 variables 

that can be measured, 11 input variables, and it is possible to 

simulate 20 different faults. The sample time is three minutes 

for  the first 22 outputs named x(1), x(2), … x(22), for the 

compound variables x(23)-x(36) the measures are obtained 

after six minutes, and for the compound variables x(37)-x(41) 

the sampling time is 15 minutes [12].   

A general scheme of the TE process can be appreciated in 

[11], where it is also possible to see a description of the 

variables and faults that describes the process. The faults are 

denoted as IDV1, IDV2, …, IDV20. Some of them are 

particularly difficult to identify because they are 

imperceptible by regarding the output signals, thus they are 

named incipient faults [12]. A revision of the TE process 

model was made in [13] because of inconsistencies in the 

ODE solver.  

Due to the difficulty of proposing an approached model 

for the TE process, data-driven methods are used for this kind 

of system. Almost all applications using PCA in the TE 

process are focused on fault detection and dimensionality 

reduction, these works show the fault detection rate (FDT) as 
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the criterion to evaluate the algorithm performance [1, 2, 3, 

8, 13, 14]. Here is proposed to evaluate the number of 

samples needed to detect a fault because it is important to 

recognize an anomalous behavior as soon as possible to avoid 

the fault evolution [15]. 

In this paper, an adaptive threshold sensitive to the 

variance [16] was implemented to reduce false alarms and the 

fault isolation was obtained using the PCA as well to get the 

FDI in the Tennessee Eastman process, evaluating the 

performance of this proposes using the fault detection rate 

[17] and the detection times required. It is important to note 

that detecting a fault is not sufficient because the operator 

must know the problem presented in the process. Thus, the 

PCA-based fault isolation for the TE process, here presented, 

is the main contribution.       

II. METHODS 

There are 41 variables to be processed from the TE 

process, and it can be assumed that at least one of them will 

highlight a fault present in the monitored process as a 

hypothesis. In order to improve the signal processing to look 

for a fault, it is possible to select the most representative 

variables. The PCA can be used to reduce the amount of data 

[16] and is useful to deal with data that contain a high degree 

of correlation between variables as in [9] was explained. 

The dataset used to generate the PCA model was obtained 

by simulating the TE process in normal operation conditions, 

the dataset contains 4801 samples. For the faulty operations, 

a fault was introduced between the 1000th and 2000th 

samples. The faults are introduced into the model by 

assigning a 1 into a vector of length 20 with the other 

elements equal to zero [13]; this vector is connected to the 

disturbance input in the model. The fault detection by using 

PCA was developed in-line using the PCA model obtained in 

normal conditions [14]. 

The data measured from the TE process are noising, 

assuming that the noise has Gaussian distribution; the PCA 

can be used also to reduce the noise magnitude. For the PCA 

implementation is required the condition of normalizing the 

measured variables grouped in the matrix 𝑋 ∈ 𝑅𝑛×𝑚 to have 

a zero mean value and unitary variance in the set 𝑋̅ [17], 

because different process variables have different units and 

mean values. Here, 𝑛 is the number of samples and m is the 

number of variables. 

A. PCA FAULT DETECTION  

Once the data were normalized in 𝑋̅, the covariance 

matrix 𝛴 ∈ 𝑅𝑚×𝑚 is computed to know which variables 

move in the same direction [2], this matrix is computed using  

 

𝛴 =
1

1 + 𝑛
𝑋̅𝑇𝑋̅, (1) 

where n is the number of samples to normalize the covariance 

matrix. The PCA is used to get a reduced dimension space to 

reduce redundancy between variables, for this purpose is 

necessary compute eigenvector decomposition for Σ. One 

way to obtain the eigenvectors is to apply the singular value 

decomposition (SVD) [14] denoted by 

 𝛴 = 𝑉𝛬𝑉𝑇 (2) 

where Λ is a diagonal matrix whose elements are the 

eigenvalues of Σ in descendent order and V is a matrix whose 

columns are eigenvectors of Σ [17]. 

 Now, it is possible to select some eigenvalues to approach 

the data set reducing redundancy between variables, i.e. 

 𝛴 ≈ 𝛴̂ = 𝑆𝑃𝑇  (3) 

where P is a matrix that has the eigenvectors selected and S 

is a matrix called the score matrix. The dimensions of these 

matrices depend on how many eigenvalues are considered to 

build 𝛴̂, now some ways to select the eigenvalues (principal 

components) are described. 

● One way to select the number of principal 

components is by taking the first eigenvalues that 

have almost all the information; thereby, the ones that 

have more correlation are ignored. To select the 

principal components most representative [3] is 

widely used the cumulative percentage variance 

(CPV) to have 85% of relevant information as in [16] 

is mentioned. The CPV is calculated using 

 

CPV(𝑎) =
𝛴𝑖=1

𝑎 𝜆𝑖

trace(𝛴)
× 100, (4) 

where 𝜆𝑖 is the i-th element in the diagonal of Λ and 

a is the number of principal components to be 

selected. 

 

 It was obtained that 33 principal components are 

required to have the 85% of the information for fault 

detection, these 33 principal components are 

obtained using only the first 33 eigenvectors 

(columns) of matrix V from the SVD; thus, in this 

case, the loading matrix would be 𝑃 ∈ 𝑅41×33. The 

principal components are obtained by a linear 

transformation using a new basis [2], it means that 

they are not a specific measured variable from X, the 

remaining 8 eigenvalues are discarded because of 

their correlation. 

● Another possibility for dimension reduction is to use 

parallel analysis (PA), to get a, now in this way a = 

12 as shown in Fig. 1, this result is also shown in the 

Master Thesis [18] in its Fig 4.3. 

 

The selection of a was by using the measures 

without any fault, and 4801 samples were used for 

each available variable by using the loading matrix 

𝑃 ∈ 𝑅41×12 which has the first a columns of V, being 

the score matrix 𝑆 ∈ 𝑅4801×12 defined as 

 
𝑆 = 𝑋̅𝑃, (5) 

a new data set 𝑋̂ is obtained, where the correlations 

and linear dependencies among variables were 

removed. The residual subspace is obtained with the 

last m-a principal components. 
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Fig. 1. Parallel analysis [18]. 

 By using only a principal components, the PCA model 

reflects the main structure of the original data, capturing the 

maximum variance to prevent the loss of information [19]. 

The accuracy of the model can be estimated using the ratio 

between the residual variance over the total variance denoted 

by (6). In the case of using all the principal components 𝑅𝑎
2 =

1, but when only some of them are selected, this value 

decreases. 

 
𝑅𝑎

2 = 1 −
𝑣𝑎𝑟(𝑋̅ − 𝑋̂)

𝑣𝑎𝑟(𝑋̅)
, (6) 

here, a represents that only a principal component were used, 

and this value is computed for each variable (column in 𝑋̅). 

In Fig. 2 are shown the ratios obtained. 

 

Fig. 2. 𝑅𝑎
2 to evaluate the PCA model for each variable. 

Once the PCA model was obtained, the data 𝑋̅ can be 

decomposed as (7) 

 𝑋̅ = 𝑋̂ + 𝑋̃, (7) 

where 𝑋̂ = 𝑋̅𝑃𝑃𝑇and 𝑋̃ = 𝑋̅𝑃̃𝑃̃𝑇 are the modeled and 

unmodeled variations respectively, and the matrix 𝑃̃ ∈

𝑅41×29 has the columns from a+1 to the last of matrix V that 

has the eigenvectors of the correlation matrix Σ. 

Thereby, these two parts are necessary to evaluate the 

variables behavior for fault detection. The modeled variations 

monitoring can be implemented by using the Hotelling chart 

𝑇2 [2] computed by (8). The unmodeled behavior is evaluated 

with the Q statistic, also called the square prediction error 

(SPE) [16]. Now, the detection indexes for these statistics are 

calculated in the following way: 

● The 𝑇2 statistic is obtained using (8) 

 
𝑇2 = 𝑋̅𝑃, 𝛬𝑎

−1𝑃𝑇𝑋̅𝑇 , (8) 

where 𝛬𝑎 ∈ 𝑅12×12 has the first a columns of matrix 

Λ, 𝑃 ∈ 𝑅41×12 is the loading matrix, and 𝑋̅ ∈
𝑅4801×12 is the normalization of data. Now, a 

threshold 𝑇𝛼
2 a is calculated using the F distribution 

[19] using (9), 

 
𝑇𝛼

2 =
(𝑛2 − 1)𝛼

𝑛(𝑛 − 𝛼)
  𝐹𝛼(𝛼, 𝑛 − 𝛼), (9) 

being 𝐹𝛼(𝛼, 𝑛 − 𝛼) = 2.3 for α = 0.05. 

 

● The Q chart the is computed with (10) 

 𝑄 = 𝑋̅𝑃̃𝑃̃𝑇𝑋̅𝑇 (10) 

From chart Q, the threshold 𝑄𝛼  in used for fault 

detection, being obtained using (11) 

𝑄𝛼 = 𝜃1  (1 +
ℎ0𝑐𝛼√2𝜃2

𝜃1

+
𝜃2ℎ0(ℎ0 − 1)

𝜃1
2 ) ,

1
ℎ0   

(11) 

where 𝜃𝑖 = 𝛴𝑗=𝑎+1
𝑚 𝜆𝑗

𝑖  and ℎ0 = 1 −
2𝜃1𝜃3

3𝜃2
2 , here, 𝜆𝑖 is the i-th 

element of the diagonal matrix Λ, and 𝑐𝛼=1.96 was obtained 

from the normal distribution with a level of significance 1-α 

= 0.95 and γ = 0.05 [20]. 

It is important to remark that at least a certain amount of 

data should be acquired to compute a relevant 𝑇2or Q charts 

to propose a threshold to detect a fault. It could be noted that 

if the number of features to obtain a model grows, the amount 

of data required grows exponentially; the PCA can be used to 

reduce the dimensionality of the data set. The TE process has 

41 variables, and an exploratory data analysis needs to 

identify the relationships between features from 41(41-

1)/2=820 cases. In areas like adaptive control and parameter 

identification, a good option is to have 10 times more 

measures than parameters to obtain, thus 410 samples can be 

used to develop a PCA model.  

An interesting application of PCA to monitor the TE 

process was developed in [20], where was used a moving 

window to detect a fault, in his Fig. 4 is shown the robustness 

depending on the amount of data used, it is clear that by using 

more data, the robustness is improved, the best result was 

obtained with 260 samples. In this work, the simulation for 

the PCA application had 4801 samples to get a PCA model, 

and the faults were applied during 500 or 1000 samples. 

A more important aspect to apply PCA is the threshold 

used for fault detection, in this way, in [21] is explained that 
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two conditions must be considered to have detectability; 

firstly, the projection of fault data, made with the 𝑇2 or Q 

charts, does not vanish; and it also will be considered that the 

fault data projection must exceed the threshold 𝑇𝛼
2 a or 𝑄𝛼 . In 

the TE model benchmark used, the faults are applied by 

writing one into an input vector, zero means that this 

particular fault will not be introduced [13]. The magnitude 

faults are not controlled, but some of them are difficult to 

detect because their effect is not visible with simple 

inspection, these kinds of faults are called incipient. 

As a first result for fault detection, the data projection to 

the principal components subspace 𝑋̂ was used to compute 

the 𝑇2 chart, this statistic is shown in the Fig. 3 in blue color. 

When the fault IDV2 is applied in the sample 1000, the 𝑇2, 

obtained from data projected using 12 principal components, 

is represented by the red line; thus, a fault can be inferred 

when the new statistic is bigger than the obtained with data in 

normal operation. In this case, the fault IDV2 was detected 

after 154 samples and it could be said that this fault is easy to 

detect. For other cases, it could not be detected the faults by 

observing their statistics; therefore, a threshold can be used 

for fault detection as in [18] is mentioned. 

 

Fig. 3. PCA when IDV2 takes place. 

 In the Fig. 4 is possible to see that the measured variables 

are noisy, the PCA model has gaussian noise in the output 

signals with a standard deviation commonly found in 

sampled variables [10]. 

 This method cannot always detect all the possible faults 

in the model, as in Table 11 of [2] was shown. The faults 

IDV3, IDV5, IDV14, IDV15, IDV16 and IDV19 almost 

never were detected using the PCA, in Fig. 5 are shown the 

𝑇2 and Q charts for the case of having the fault IDV19 at 

sample 1000, and it can be inferred that there are false 

positives and false negatives; therefore, this fault cannot be 

detected correctly. 

In [2] a modified PCA was presented for fault detection 

in the TE process, where if 𝑄 > 𝑄𝛼  or 𝑇2 > 𝑇𝛼
2, then a fault 

has been detected. The condition for this technique 

application is that the fault must appear, at least, 40 samples 

after the simulation begins. The 𝑇2 and Q charts obtained 

when fault IDV1 appears at sample 1000 are shown in Fig. 4 

and it is possible to detect this particular fault; however, some 

faulty samples can be omitted having in this way false 

positives but no false alarms. 

 

Fig. 4. 𝑇2 and Q charts. 

An adaptive threshold can avoid false alarms (FA), one 

way to reduce the FA rate is by using a low-pass filter [22], 

but the filter increases the number of samples needed to detect 

each fault. In Table 3 of [23] was shown the result of 

implementing the independent component analysis (ICA) 

plus a wavelet filter for denoising the signals in the TE 

process, where the more complicated faults to be detected 

were IDV3, IDV9, and IDV15 as also is indicated in [1]. 

 

Fig. 5. 𝑇2 and Q charts for fault IDV19. 

In [16] a variable threshold was proposed for dynamic 

fault detection. This threshold is adapted according to the data 

variance by using the average (12) and the variance of 𝑇2 (13) 

 
µ =

1

𝑛
𝛴𝑖=1

𝑛 𝑇𝑖
2, 

(12) 

 
𝜎 =

1

𝑛 + 1
𝛴𝑖=1

𝑛 (𝑇𝑖
2 − µ2). 

(13) 

With a significance level (1-α), the adaptive threshold 

𝑇𝑎𝑑𝑝 is computed by using (14) 

 
𝑇𝑎𝑑𝑝 = µ(1 + 𝑧), (14) 
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where typically 𝛼 = 95% and z is a coefficient related to a 

such that for the probability of having the mean µ with the 

significance level (1-α), is necessary that prob(-z < µ < z) = 

1-α. For this condition z can be proposed using a cumulative 

distribution function, in [16] was defined the function (15) 

 
𝛶(𝑧) = prob(µ < 𝑧) = 1 −

𝛼

2
, (15) 

from [19] was proposed to use z = 1.5 for having α = 0.95. 

The 𝑇𝑣𝑠𝑎 threshold defined by (16) is sensitive to the data 

variance which is important because each variable has its own 

variance:  

 

𝑇𝑣𝑠𝑎 = {
𝑇𝛼

2,
µ + 𝜎𝑧,

µ(1 + 𝑧),
 

if 𝑇𝜎
2 ≥ 𝑇𝑎𝑑𝑝 ,

if 𝑇𝛼
2 < 𝑇𝑎𝑑𝑝  and µ ≤ 𝜎

  if 𝑇𝛼
2 < 𝑇𝑎𝑑𝑝 and µ > 𝜎

 (16) 

In this way 𝑇𝑣𝑠𝑎 uses the peaks of the signal to avoid false 

alarms, which is important in the transient-state due to 

changes in the system behavior. This sensitive threshold can 

be appreciated in Fig. 6 for the TE process simulation without 

any fault, a detail is shown to see the threshold adjustment. 

Here the idea presented in [16] was used; the number of 

samples needed to detect each fault is shown in Table 1. Also 

a robust PCA can be implemented in order to reduce false 

alarms [24]. 

 

Fig. 6. 𝑇2 and Q charts without faults. 

Similar results were presented by [2], where a comparison 

of using different methods for data-driven fault diagnosis as 

the PCA, ICA, and PLS among others, were applied to the TE 

process, in comparison with their Table 11, almost all 

possible faults can be detected with a fault detection rate of 

100% in this work. Although, IDV3 and IDV16 cannot be 

detected correctly with the 𝑇𝑣𝑠𝑎 threshold used here. 

The PCA helps in reducing the dimensionality and the 

correlation between variables, and it could be necessary less 

instrumentation, but to obtain the 𝑇2 used to detect the faults, 

all the variables were needed for its computing; thus, a 

variable selection can be used to have a faster algorithm. The 

variable selection used in this paper is shown in next section. 

B. PCA FAULT ISOLATION  

For fault isolation, the PCA model helps to describe the 

normal operation condition in a process, and then by 

comparing the actual projections against the PCA model, the 

faults can be isolated. The projections give the data 

reconstruction removing certain variables, in the case that the 

variable removed is faulty, and a reconstruction of the normal 

operation behavior is obtained. 

Some works have been made for FDI using PCA, also 

there are classical PCA modifications to improve the faults 

isolation as Interval-PCA [24], Kernel PCA [26], radii PCA 

[27] or dynamic PCA [28]. In [21] is shown some indices to 

detect and to isolate faults in their Table 4, the best results 

were obtained using the SPE and φ indices; in a similar case, 

the work made in [29] where some PCA methods for fault 

isolation were applied in a paper machine, where the best 

results were obtained using the residual subspace to compute 

the SPE, these results are shown in its Table 8. Thus, here is 

described the FDI using the residual subspace obtained with 

the PCA. As mentioned, the Q chart named SPE and 

described by (10), the residual subspace 𝑋̃ (17) is obtained 

using the loading matrix P (3) as follows: 

 
𝑋̃ = 𝑋̅(𝐼 − 𝑃𝑃𝑇). (17) 

Now by defining 𝐶 = 𝑃𝑃𝑇 , a projection matrix Γ(i) is 

computed using (18) 

 
𝛤(𝑖) = 𝐼 +

𝜍𝑖𝜍𝑖
𝑇

1 − 𝜍𝑖
𝑇𝐶𝜍𝑖

(𝐶 − 𝐼), (18) 

where 𝜍𝑖 ∈ 𝑅41 is a vector with all elements equal to zero 

except the i-th which is 1. 

With the projection matrix (18), the variables 

reconstruction is obtained using (19), where the i-th variable 

removed [28]. 

 
𝑋̂(𝑖) = 𝑋̅𝛤(𝑖). (19) 

To isolate faults is possible to use the reconstructions 

from the projections made with the residual subspace, this is 

obtained with the residual projection matrix Γ(i) defined by 

(20) 

 
𝐹(𝑖) = (𝐼 − 𝐶)𝛤(𝑖), (20) 

the reconstructed residuals are computed using (21) 

 
𝑋̃(𝑖) = 𝑋̅𝐹(𝑖). (21) 

The fault isolation can be achieved by removing some 

variables to perform the reconstructed residuals𝑋̃(𝑖), in [29] 

was used an incidence matrix which is orthonormal for the 

null space of (I-C), a similar method was shown in [25], they 

used a matrix to denote the fault signature. In this work, the 

fault signature was proposed selecting the reconstructed 

residuals that respond to the specific fault added to the 

system. 

In the TE process model, the faults are applied by adding 

a 1 into an input vector of length 20 to denote which fault will 

be simulated and the instant time of the fault application. The 

 



Journal of Robotics and Control ISSN: 2715-5072 124 

 

Marco A. Márquez-Vera, Adaptive threshold PCA for fault detection and isolation 

faults magnitude cannot be controlled, but a reconstructed 

vector 𝑥̃(𝑖) can be decomposed as (22) 

 
𝑥̃𝑖(𝑘) = 𝑥̃(𝑘) − 𝜍𝑖𝐹𝑖(𝑘), (22) 

where Fi(k) is the fault magnitude [25], considering that the 

i-th variable is faulty, and k represents the k-th sample. In this 

case, the estimated fault magnitude can be estimated using 

certain detection index, in this case SPE = 𝑃̃𝑃̃𝑇 =𝐼 − 𝐶. 

Hence, Fi(k) is computing by (23) 

 
𝐹𝑖(𝑘) = (𝜍𝑖

𝑇(𝐼 − 𝐶)𝜍𝑖)
−1𝜍𝑖

𝑇(𝐼 − 𝐶)𝑥̃(𝑘), (23) 

here, k represents the sample time. 

The result was similar to the shown by [17], in this case 

was also taken into consideration the isolation time required 

to isolate each fault using PCA. In Table 1 are shown the 

detection and isolation times presented as the number of 

samples required. Just some works show the detection time, 

here is compared the results obtained in [30]. 

III. RESULTS AND DISCUSSION 

The FDR obtained was similar to the results reported in 

the literature, but in this work is shown the samples needed 

to detect and isolate a fault because a fast detection is 

important for a safety process [31], one detected a fault is 

necessary to isolate it to know what direction to take in order 

to fix the problem.  In Table 1 are show the samples needed 

for fault detection after the fault simulation, for some faults 

the detection is fast, but for the incipient faults the detection 

is achieved some hours after the fault application, these cases 

need to be improved because the fault can evolve affecting 

the process and the operators near the process installation 

[32], also it is possible to see that the isolation occurs soon 

after the fault detection. For comparison the detection times 

obtained from [30] are shown in the second column. 

In literature is mentioned that using the SPE (Q chart) the 

detection has better results [3]. Another option is to improve 

results using soft computing to adapt the PCA. The results 

obtained in [33] show the FDI for faults IDV1, IDV2, IDV4, 

and IDV5 in the TE process with an adaptive threshold. In 

our opinion a mixing detection using ICA could need fewer 

samples until fault detection, keeping in mind that the sample 

time is three minutes.  

Most papers use the fault detection rate (FDR) to evaluate 

the detection performance of the methods proposed, here in 

Table 2 is shown a comparison of the current application 

against the result shown in [24] where sparse PCA was used 

for fault diagnosis, the work shown in [30] where a dynamic 

PCA was implemented and the results of [34] where a neural 

network was used. 

IV. CONCLUSIONS 

The PCA is a common technique used for dimension 

reduction, it helps to avoid redundancy in the information, the 

main drawback is to guarantee a Gaussian distribution in the 

data collected, the TE model adds Gaussian noise to all the 

variables, but the faults could have a non-gaussian behavior, 

thus the ICA could need fewer samples to detect a fault. In 

this work were shown the detection times for the 20 faults 

that can be simulated in the TE process, particularly the fault 

IDV9 was detected and isolated. The fault isolation was few 

samples after the fault detection, and the efforts will be in 

reducing the detection times because in four faults the 

detection times were bigger than the reported in the literature. 

Also was presented the fault detection rates that were pretty 

similar to those shown in similar papers. As future work, it is 

proposed to implement an ICA model to obtain the Q chart 

for the FDI. Using ICA is possible to reduce the detection 

times and to isolate the incipient faults IDV3 and IDV16. 

TABLE I.   NUMBER OF SAMPLES NEEDED FOR FDI IN THE TE PROCESS  

 Fault 
Detection time 

[30] 
Detection time Isolation time 

IDV1 12 33 34 

IDV2 45 17 24 

IDV3 Not detected Not detected Not isolated 

IDV4 6 4 7 

IDV5 6 6 7 

IDV6 6 2 11 

IDV7 6 2 3 

IDV8 57 425 426 

IDV9 Not detected 604 605 

IDV10 180 659 663 

IDV11 18 150 151 

IDV12 63 124 126 

IDV13 114 503 505 

IDV14 9 94 95 

IDV15 Not detected 2 4 

IDV16 84 Not detected Not isolated 

IDV17 48 98 101 

IDV18 27 351 355 

IDV19 132 121 130 

IDV20 108 197 201 

TABLE II.  FAULT DETECTION RATES IN THE TE PROCESS 

Fault FDR [24] FDR [30] FDR [34] 
FDR this 

work 

IDV1 100 99.50 97.70 98.50 

IDV2 98 98.13 97.20 99.50 

IDV3 7 0 0 0 

IDV4 100 99.75 99.60 100 

IDV5 100 21.63 92.80 100 

IDV6 100 99.75 99.50 100 

IDV7 100 99.75 99.50 100 

IDV8 98 96.75 62.30 76.50 

IDV9 6 0 0 16.75 

IDV10 91 32.38 81.80 65.80 
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IDV11 82 86.75 52.50 72.50 

IDV12 100 97.38 55.30 84.75 

IDV13 95 95.25 50.40 75.60 

IDV14 100 99.63 69.50 82.60 

IDV15 10 0 0 100 

IDV16 94 28.75 77.90 0 

IDV17 97 95.63 71.40 94.55 

IDV18 91 98.88 84.30 82.60 

IDV19 95 8.38 97.20 77.85 

IDV20 91 48.63 73.40 75.25 
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