Implementation of IoT of an Electric Infant Warmer to Prevent Hypothermia in Newborns

Ekha Rifki Fauzi, Angger Maharesi, Noor Alis Setiyadi

Abstract


Hypothermia is a drop in body temperature below 36.5°C in newborns. It results in an internal distribution of body heat from the nucleus to the periphery, followed by heat loss greater than metabolic production. Hypothermia is one of the factors predisposing to metabolic disorders, intracranial hemorrhage, respiratory distress, and Necrotizing enterocolitis. Hypothermia problems can be treated with infant warmers. Thus, the need for a infant warmer is considered to improve survival in newborns. This study aims to improve the accuracy of temperature monitoring, increase security, and enable remote monitoring. The temperature sensor of the device is calibrated with comparable devices such as Incubator Analyzer and Thermo hygrometer while the SpO2 sensor is calibrated with Spotlight SpO2 Functional Tester and Thermo hygrometer. Achievement and validation of temperature and oxygen saturation use a calibration comparison tool. The results of the temperature sensor measurements, including air temperature and skin sensor temperature, namely: air temperature error tolerance ≤2°C and skin sensor temperature error tolerance ± 0.5 ° C. All two indicators have the same standard deviation value of ±0.49. The SpO2 indicator reached an error tolerance value of ± 1% O2 with a standard deviation value of ± 0.6-0.9 from six trials. Then the pulse rate indicator obtained an error tolerance of ±5% with a standard deviation value of ±0.6. The smart infant warmer tool provides benefits to avoid excessive heat from the heater and minimize low temperatures that cause hypothermia through the Internet of Things technology. Furthermore, this research can be improved with machine learning technology to increase efficiency and effectiveness in patient treatment.

Keywords


Infant Warmer; IoT; Hypothermia.

Full Text:

PDF

References


J. Patodia et al., “Reducing admission hypothermia in newborns at a tertiary care NICU of northern India: A quality improvement study,” J. Neonatal. Perinatal. Med., vol. 14, no. 2, pp. 277–286, 2021, doi: 10.3233/NPM-190385.

J. M. Perlman et al., Part 7: Neonatal resuscitation: 2015 International Consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations, vol. 132. Circulation, 2015.

K. Lunze, D. E. Bloom, D. T. Jamison, and D. H. Hamer, “The global burden of neonatal hypothermia: Systematic review of a major challenge for newborn survival,” BMC Med., vol. 11, no. 1, 2013, doi: 10.1186/1741-7015-11-24.

P. N. Suman Rao, R. Udani, and R. Nanavati, “Kangaroo Mother Care for Low Birth Weight Infants: A Randomized Controlled Trial,” Indian Pediatr., vol. 45, pp. 17–23, 2008.

E. M. Mccall, F. Alderdice, H. L. Halliday, S. Vohra, and L. Johnston, “Interventions to prevent hypothermia at birth in preterm and/or low birth weight infants (Review),” Cochrane Database Syst. Rev., vol. 2018, no. 2, 2018, doi: 10.1002/14651858.CD004210.pub5.

World Health Organization. WHO compendium of innovative health technologies for low resource settings, 2011-2014: assistive devices, eHealth solutions, medical devices, other technologies, technologies for outbreaks. World Health Organization, 2015.

R. B. Knobel, D. Holditch-Davis, T. A. Schwartz, and J. E. Wimmer, “Extremely low birth weight preterm infants lack vasomotor response in relationship to cold body temperatures at birth,” J. Perinatol., vol. 29, no. 12, pp. 814–821, 2009, doi: 10.1038/jp.2009.99.

K. Cramer, N. Wiebe, L. Hartling, E. Crumley, and S. Vohra, “Heat loss prevention: A systematic review of occlusive skin wrap for premature neonates,” J. Perinatol., vol. 25, no. 12, pp. 763–769, 2005, doi: 10.1038/sj.jp.7211392.

D. S. Sousa et al., “Morbidade em recém- nascidos prematuros de extremo baixo peso em unidade de terapia intensiva neonatal,” Rev. Bras. Saude Matern. Infant., vol. 17, no. 1, pp. 139–147, 2017, doi 10.1590/1806-93042017000100008.

M. F. B. De Almeida et al., “Hypothermia and early neonatal mortality in preterm infants,” J. Pediatr., vol. 164, no. 2, pp. 271–276, 2014, doi: 10.1016/j.jpeds.2013.09.049.

A. R. Laptook et al., “Admission Temperature and Associated Mortality and Morbidity among Moderately and Extremely Preterm Infants,” J. Pediatr., vol. 192, pp. 53-59.e2, 2018, doi: 10.1016/j.jpeds.2017.09.021.

F. Ahmed, A. Sufyan, S. Hussain, A. Rehman, S. Amin and Y. Salam, "Smart Baby Incubator," 2021 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube), pp. 1-5, 2021, doi: 10.1109/ICECube53880.2021.9628245.

F. M. Vitale, G. Chirico, and C. Lentini, "Sensory stimulation in the NICU environment: Devices, systems, and procedures to protect and stimulate premature babies," Children, vol. 8, no. 5, p. 334, 2021.

W. Widhiada, I. N. G. Antara, I. N. Budiarsa, and I. M. G. Karohika, “The Robust PID Control System of Temperature Stability and Humidity on Infant Incubator Based on Arduino at Mega 2560,” IOP Conf. Ser. Earth Environ. Sci., vol. 248, no. 1, 2019, doi: 10.1088/1755-1315/248/1/012046.

S. Y. Setiawan, D. H. Andayani, A. Pudji, L. Soetjiatie, and A. B. A. Kusuma, "Analysis Of Baby Incubator Humidity Based PID with Kangaroo Mode," Journal of Electronics, Electromedical Engineering, and Medical Informatics, vol. 4, no. 1, pp. 50-54, 2022.

I. Sharma and M. Singh, “Infant Warmer Design with PID Control for Stability and Equal Temperature Distribution Equipped with Digital Scales for Prevention of Hypothermia in Newborns,” Int. J. Adv. Heal. Sci. Technol., vol. 1, no. 1, pp. 7–13, 2021, doi: 10.35882/ijahst.v1i1.2.

A. Alimuddin, R. Arafiyah, I. Saraswati, R. Alfanz, P. Hasudungan, and T. Taufik, "Development and performance study of temperature and humidity regulator in baby incubator using fuzzy-pid hybrid controller," Energies, vol. 14, no. 20, p. 6505, 2021.

A. B. Fakhri, S. K. Gharghan, and S. L. Zubaidi, "Accurate Infants Remote Temperature Monitoring System based on Contactless Temperature Sensor and GSM Network," 2020 13th International Conference on Developments in eSystems Engineering (DeSE), pp. 177-182, 2020, doi: 10.1109/DeSE51703.2020.9450733.

M. E. Wieler, T. G. Murphy, M. Blecherman, H. Mehta, and G. J. Bender, “Infant heart-rate measurement and oxygen desaturation detection with a digital video camera using imaging photoplethysmography,” J. Perinatol., vol. 41, no. 7, pp. 1725–1731, 2021, doi: 10.1038/s41372-021-00967-1.

B. G. Irianto, A. M. Maghfiroh, M. Sofie, and A. Kholiq, “Baby Incubator with Overshoot Reduction System using PID Control Equipped with Heart Rate Monitoring Based on Internet of Things,” Int. J. Technol., vol. 14, no. 4, p. 811, 2023, doi: 10.14716/ijtech.v14i4.5678.

S. F. Memon, M. Memon, and S. Bhatti, "Wearable technology for infant health monitoring: a survey," IET Circuits, Devices & Systems, vol. 14, no. 2, pp. 115-129, 2020.

N. H. Wijaya, F. A. Fauzi, E. T. Helmy, P. T. Nguyen, and R. A. Atmoko, “The design of heart rate detector and body temperature measurement device using ATMega16,” J. Robot. Control, vol. 1, no. 2, pp. 40–43, 2020, doi: 10.18196/jrc.1209.

J. Jalinas, W. K. Raharja, and B. P. E. Wijaya, “Design of Monitoring Tool Heartbeat Rate and Human Body Temperature Based on WEB,” MATEC Web Conf., vol. 164, pp. 1–19, 2018, doi: 10.1051/matecconf/201816401017.

F. N. Aisyah, K. Devara, N. R. Poespawati, and R. W. Purnamaningsih, "The design of stethoscope-based heart rate monitoring device for infant incubator application," in AIP Conference Proceedings, vol. 2092, no. 1, 2019.

M. S. A. Nampira, A. Kholiq, and L. Lamidi, “A Modification of Infant Warmer with Monitoring of Oxygen Saturation, Heart Rate and Skin Temperature,” J. Electron. Electromed. Eng. Med. Informatics, vol. 3, no. 1, pp. 19–25, 2021, doi: 10.35882/jeeemi.v3i1.4.

J. Muralidharan, S. Sharumathi, A. Sivasudhan, K. Yamini, and K. Sathishkumar, "Detecting the Oxygen Saturation level and Heart Rate using MAX30100 Sensor," 2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN), pp. 1-5, 2023, doi: 10.1109/ViTECoN58111.2023.10157171.

P. C. Nugraha, M. R. Mak’ruf, Lusiana, and S. Luthfiyah, “Long Distance Dual SpO2 Monitoring in Premature Babies Via Bluetooth Communication,” J. Electron. Electromed. Eng. Med. Informatics, vol. 3, no. 2, pp. 106–110, 2021, doi: 10.35882/jeeemi.v3i2.7.

W. Shalannanda, I. Zakia, F. Fahmi, and E. Sutanto, "Implementation of the Hardware Module of IoT-based Infant Incubator Monitoring System," 2020 14th International Conference on Telecommunication Systems, Services, and Applications (TSSA), pp. 1-5, 2020, doi: 10.1109/TSSA51342.2020.9310901.

E. A. Suprayitno, M. R. Marlianto, and M. I. Mauliana, “Measurement device for detecting oxygen saturation in blood, heart rate, and temperature of the human body,” J. Phys. Conf. Ser., vol. 1402, no. 3, p. 033110, 2019, doi: 10.1088/1742-6596/1402/3/033110.

C. H. Huang and J. W. Guo, “Design of Reflectance Pulse Oximeter and BPM using the Max30100 Sensor in Early Detection of Hypoxemia in Patients with Cardiovascular Disorders,” Int. J. Adv. Heal. Sci. Technol., vol. 1, no. 1, pp. 1–6, 2021, doi: 10.35882/ijahst.v1i1.1.

N. N. Sari, M. N. Gani, R. A. M. Yusuf, and R. Fernando, “Telemedicine for silent hypoxia: Improving the reliability and accuracy of Max30100-based system,” Indones. J. Electr. Eng. Comput. Sci., vol. 22, no. 3, pp. 1419–1426, 2021, doi: 10.11591/ijeecs.v22.i3.pp1419-1426.

A. J. Puspitasari, D. Famella, M. S. Ridwan, and M. Khoiri, “Design of low-flow oxygen monitor and control system for respiration and SpO2 rates optimization,” J. Phys. Conf. Ser., vol. 1436, no. 1, pp. 1–9, 2020, doi: 10.1088/1742-6596/1436/1/012042.

L. Lamidi, A. Kholiq, and M. Ali, “A Low-Cost Baby Incubator Design Equipped with Vital Sign Parameters,” Indones. J. Electron. Electromed. Eng. Med. informatics, vol. 3, no. 2, pp. 53–58, 2021, doi: 10.35882/ijeeemi.v3i2.3.

A. M. Maghfiroh, F. Amrinsani, R. M. Firmansyah, and S. Misra, “Infant Warmer with Digital Scales for Auto Adjustment PID Control Parameters,” Teknokes J., vol. 15, no. 2, pp. 117–123, 2022, doi: 10.35882/jteknokes.v15i2.246.

A. Majid, E. D. Setioningsih, A. Kholiq, S. Y. Setiawan, and A. Suthar, “Comparative Analysis of PID and Fuzzy Temperature Control System on Infant Warmer,” J. Electron. Electromed. Eng. Med. Informatics, vol. 4, no. 4, 2022, doi: 10.35882/jeeemi.v4i4.257.

D. R. Ningtias, B. Wahyudi, and I. T. Harsoyo, “Temperature Monitoring on Infant Warmer Using Arduino-based INCU Analyzer,” Elektr. J., vol. 13, no. 1, pp. 22-25, 2021, doi: 10.26623/elektrika.v13i1.3118.

I. Sharma and M. Singh, "Infant Warmer Design with PID Control for Stability and Equal Temperature Distribution Equipped with Digital Scales for Prevention of Hypothermia in Newborns," International Journal of Advanced Health Science and Technology, vol. 1, no. 1, 7-13, 2021.

S. Luthfiyah, F. Kristya, I. D. G. H. Wisana, and M. Thaseen, “Baby Incubator Monitoring Center for Temperature and Humidity using WiFi Network,” J. Electron. Electromed. Eng. Med. Informatics, vol. 3, no. 1, pp. 8–13, 2021, doi: 10.35882/jeeemi.v3i1.2.

A. Kholiq and L. Lamidi, "Analysis of Temperature on Baby Incubator Control System," Journal of Biomimetics, Biomaterials and Biomedical Engineering, vol. 50, pp. 103-111, 2021.

M. M. Rahman and M. S. Islam, "Design of a Fuzzy Based Pid Algorithm for Temperature Control of An Incubator," In Journal of Physics: Conference Series, vol. 1969, no. 1, p. 012055, 2021.

A. Marwanto, K. Sunriyadi, and S. Alifah, "Fuzzy Logic Implementation For Incubator Prototype With Temperature And Humidity Control," 2019 6th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), pp. 71-74, 2019, doi: 10.23919/EECSI48112.2019.8976917.

M. Shaib, M. Rashid, L. Hamawy, M. Arnout, I. E. Majzoub and A. J. Zaylaa, "Advanced portable preterm baby incubator," 2017 Fourth International Conference on Advances in Biomedical Engineering (ICABME), pp. 1-4, 2017, doi: 10.1109/ICABME.2017.8167522.

V. N. Azkiyak, S. Syaifudin, and D. Titisari, “Incubator Analyzer Using Bluetooth Android Display (Humidity & Air Flow),” J. Electron.Electromed. Eng. Med. informatics, vol. 1, no. 2, pp. 71–77, 2020, doi: 10.35882/ijeeemi.v1i2.5.

A. Hannouch, T. Lemenand, K. Khoury, and C. Habchi, “Heat and mass-transfer of preterm neonates nursed inside incubators - A review,” Therm. Sci. Eng. Prog., vol. 18, p. 100553, 2020.

A. R. Shabaan, S. M. El-Metwally, M. M. A. Farghaly, and A. A. Sharawi, "PID and fuzzy logic optimized control for temperature in infant incubators," 2013 5th International Conference on Modelling, Identification and Control (ICMIC), pp. 53-59, 2013.

S. Sendra, P. Romero-Díaz, J. Navarro-Ortiz, and J. Lloret, "Smart Infant Incubator Based on LoRa Networks," 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA), pp. 1-6, 2018, doi: 10.1109/AICCSA.2018.8612863.

A. G. Shabeeb, A. J. Al-Askery, and Z. M. Nahi, “Remote monitoring of a premature infants incubator,” Indones. J. Electr. Eng. Comput. Sci., vol. 17, no. 3, pp. 1232–1238, 2020, doi: 10.11591/ijeecs.v17.i3.pp1232-1238.

D. N. F. Mohamad Ishak, M. M. Abdul Jamil, and R. Ambar, “Arduino Based Infant Monitoring System,” IOP Conf. Ser. Mater. Sci. Eng., vol. 226, no. 1, p. 012095, 2017, doi: 10.1088/1757-899X/226/1/012095.

B. Ashish, "Temperature monitored IoT based smart incubator," 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp. 497-501, 2017, doi: 10.1109/I-SMAC.2017.8058400.

S. S. M. Sheet, Z. G. Mohammed, K. N. Khaleel, and A. A. Abbas, "Smart Infant Incubator Based On Mega Microcontroller," 2019 2nd International Conference on Engineering Technology and its Applications (IICETA), pp. 1-6, 2019, doi: 10.1109/IICETA47481.2019.9013004.

M. Koli, P. Ladge, B. Prasad, R. Boria, and N. J. Balur, "Intelligent Baby Incubator," 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 1036-1042, 2018, doi: 10.1109/ICECA.2018.8474763.

M. Ali, M. Abdelwahab, S. Awadekreim, and S. Abdalla, "Development of a Monitoring and Control System of Infant Incubator," 2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), pp. 1-4, 2018, doi: 10.1109/ICCCEEE.2018.8515785.

P. T. Kapen, Y. Mohamadou, F. Momo, D. K. Jauspin, N. Kanmagne, and D. D. Jordan, “Development of a neonatal incubator with phototherapy, biometric fingerprint reader, remote monitoring, and heart rate control adapted for developing countries hospitals,” Journal of Neonatal Nursing, vol. 25, no. 6, pp. 298–303, 2019, doi 10.1016/j.jnn.2019.07.011.

M. Mamun, "A Wireless Based Temperature, Humidity and Light Intensity Monitoring System for Child Incubators," Int. J. Eng. Trends Appl, vol. 2, no. 3, pp. 67-71, 2015.

A. S. Go et al., "Heart disease and stroke statistics—2014 update: a report from the American Heart Association," circulation, vol. 129, no. 3, pp. e28-e292, 2014.

L. Agustine, I. Muljono, P. R. Angka, A. Gunadhi, D. Lestariningsih, and W. A. Weliamto, "Heart Rate Monitoring Device for Arrhythmia Using Pulse Oximeter Sensor Based on Android," 2018 International Conference on Computer Engineering, Network and Intelligent Multimedia (CENIM), pp. 106-111, 2018, doi: 10.1109/CENIM.2018.8711120.

A. Guber, G. Epstein Shochet, S. Kohn, and D. Shitrit, “Wrist-Sensor Pulse Oximeter Enables Prolonged Patient Monitoring in Chronic Lung Diseases,” J. Med. Syst., vol. 43, pp. 1-7, 2019, doi: 10.1007/s10916-019-1317-2.

B. Annapurna, A. Manda, A. C. Raj, R. Indira, S. P. Kumari, and V. Nagalakshmi, “Max 30100/30102 Sensor Implementation to Viral Infection Detection Based On Spo2 and Heartbeat Pattern,” Ann. Rom. Soc. Cell Biol., vol. 25, no. 2, pp. 2053–2061, 2021.

M. A. Yusof and Y. Wen Hau, "Mini Home-Based Vital Sign Monitor with Android Mobile Application (myVitalGear)," 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), pp. 150-155, 2018, doi: 10.1109/IECBES.2018.8626639.

S. S. Al-Majeed, I. S. Al-Mejibli, and J. Karam, "Home telehealth by Internet of Things (IoT)," 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 609-613, 2015, doi: 10.1109/CCECE.2015.7129344.

M. S. Rahman, N. C. Peeri, N. Shrestha, R. Zaki, U. Haque, and S. H. Ab Hamid, “Defending against the Novel Coronavirus (COVID-19) outbreak: How can the Internet of Things (IoT) help to save the world?,” Health policy and technology, vol. 9, no. 2, pp. 136–138, 2020, doi: 10.1016/j.hlpt.2020.04.005.

J. Wan et al., “Wearable IoT enabled real-time health monitoring system,” Eurasip J. Wirel. Commun. Netw., vol. 2018, no. 1, pp. 1-10, 2018, doi: 10.1186/s13638-018-1308-x.

E. Christaki, “New technologies in predicting, preventing and controlling emerging infectious diseases,” Virulence, vol. 6, no. 6, pp. 558–565, 2015, doi: 10.1080/21505594.2015.1040975.

J. Wan, M. Li, M. J. O'Grady, X. Gu, M. A. A. H. Alawlaqi, and G. M. P. O'Hare, "Time-Bounded Activity Recognition for Ambient Assisted Living," in IEEE Transactions on Emerging Topics in Computing, vol. 9, no. 1, pp. 471-483, 2021, doi: 10.1109/TETC.2018.2870047.




DOI: https://doi.org/10.18196/jrc.v4i4.18539

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Ekha Rifki Fauzi, Angger Maharesi, Noor Alis Setiyadi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik