Evaluating the Battery Management System's Performance Under Levels of State of Health (SOH) Parameters

Lora Khaula Amifia, Muhammad Adib Kamali

Abstract


Batteries in electric vehicles are the primary focus battery health care. The Battery Management System (BMS) maintains optimal battery conditions by evaluating the system's Htate of health (SOH). SOH identification can recommend the right time to replace the battery to keep the electric vehicle system working optimally. With suitable title and accuracy, the battery will avoid failure and have a long service life. This research aims to produce estimates and identify SOH parameters so that the performance of the battery management system increases. The central parameter values obtained are R0, Rp, and Cp based on Thevenin battery modeling. Then, to get good initialization and accurate results, the parameter identification is completed using an adaptive algorithm, namely Coulomb Counting and Open Circuit Voltage (OCV). The two algorithms compare the identification results of error, MAE, RSME, and final SOH. The focus of this research is to obtain data on estimation error values along with information regarding reliable BMS performance. The performance of the current estimation algorithm is known by calculating the error, which is presented in the form of root mean square error (RMSE) and mean absolute error (MAE). The SOH estimation results using Coulomb Counting have a better error than OCV, namely 1.770%, with a final SOH value of 17.33%. The Thevenin battery model can model the battery accurately with an error of 0.0451%.

Keywords


Battery Management System, State of Health, Battery Parameters.

Full Text:

PDF

References


M. Gao et al., “HFCM-LSTM: A novel hybrid framework for state-of-health estimation of lithium-ion battery,” Energy Reports, vol. 9, pp. 2577–2590, 2023, doi: 10.1016/j.egyr.2023.01.109.

G. Yüksek and A. Alkaya, “A novel state of health estimation approach based on polynomial model for lithium-ion batteries,” Int. J. Electrochem. Sci., vol. 18, no. 5, p. 100111, 2023, doi: 10.1016/j.ijoes.2023.100111.

M. Cha, H. Enshaei, H. Nguyen, and S. G. Jayasinghe, “Towards a future electric ferry using optimisation-based power management strategy in fuel cell and battery vehicle application — A review,” Renew. Sustain. Energy Rev., vol. 183, p. 113470, 2023, doi: 10.1016/j.rser.2023.113470.

R. Youssef, M. S. Hosen, J. He, M. Al-Saadi, J. Van Mierlo, and M. Berecibar, “Novel design optimization for passive cooling PCM assisted battery thermal management system in electric vehicles,” Case Stud. Therm. Eng., vol. 32, p. 101896, 2022, doi: 10.1016/j.csite.2022.101896.

M. Bernagozzi, A. Georgoulas, N. Miché, and M. Marengo, “Heat pipes in battery thermal management systems for electric vehicles: A critical review,” Appl. Therm. Eng., vol. 219, 2023, doi: 10.1016/j.applthermaleng.2022.119495.

A. Wazeer, A. Das, C. Abeykoon, A. Sinha, and A. Karmakar, “Phase change materials for battery thermal management of electric and hybrid vehicles: A review,” Energy Nexus, vol. 7, p. 100131, 2022, doi: 10.1016/j.nexus.2022.100131.

R. Medina, Z. Parfant, T. Pham, and S. Wilkins, “Multi-layer predictive energy management system for battery electric vehicles,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 14167–14172, 2020, doi: 10.1016/j.ifacol.2020.12.1035.

Q. Zhang, J. Han, G. Li, and Y. Liu, “An adaptive energy management strategy for fuel cell/battery/supercapacitor hybrid energy storage systems of electric vehicles,” Int. J. Electrochem. Sci., vol. 15, no. 4, pp. 3410–3433, 2020, doi: 10.20964/2020.04.50.

V. Srivastava et al., “A comprehensive review of the reclamation of resources from spent lithium-ion batteries,” vol. 474, 2023, doi: 10.1016/j.cej.2023.145822.

X. Xu, G. Li, and H. Zhang, “Optimal Energy Management System Design Based on Dynamic Programming for Battery Electric Vehicles,” IFAC-PapersOnLine, vol. 53, no. 5, pp. 634–637, 2020, doi: 10.1016/j.ifacol.2021.04.153.

Z. Zhang, S. Wang, N. Lin, Z. Wang, and P. Liu, “State of Health Estimation of Lithium-Ion Batteries in Electric Vehicles Based on Regional Capacity and LGBM,” Sustain., vol. 15, no. 3, p. 103457, 2023, doi: 10.3390/su15032052.

Q. Yang, Y. Huang, Y. Wu, and S. Wu, “International Journal of Electrochemical Science Improving lithium-ion battery performance with attapulgite nanoparticle-modified polypropylene separator,” Int. J. Electrochem. Sci., vol. 18, no. 12, p. 100324, 2023, doi: 10.1016/j.ijoes.2023.100324.

A. S. Mohammed, S. M. Atnaw, A. O. Salau, and J. N. Eneh, “Review of optimal sizing and power management strategies for fuel cell/battery/super capacitor hybrid electric vehicles,” Energy Reports, vol. 9, pp. 2213–2228, 2023, doi: 10.1016/j.egyr.2023.01.042.

Y. Chen et al., “Reviewing electrochemical stability of ionic liquids-/deep eutectic solvents-based electrolytes in lithium-ion, lithium-metal and post-lithium-ion batteries for green and safe energy,” Green Energy Environ., 2023, doi: 10.1016/j.gee.2023.05.002.

Y. Liu, C. Liu, Y. Liu, F. Sun, J. Qiao, and T. Xu, “Review on degradation mechanism and health state estimation methods of lithium-ion batteries,” J. Traffic Transp. Eng., vol. 10, no. 4, pp. 578–610, 2023, doi: 10.1016/j.jtte.2023.06.001.

M. Mahmud et al., “Lithium-ion battery thermal management for electric vehicles using phase change material: A review,” Results Eng., vol. 20, p. 101424, 2023, doi: 10.1016/j.rineng.2023.101424.

X. Guo, K. Wang, S. Yao, G. Fu, and Y. Ning, “RUL prediction of lithium ion battery based on CEEMDAN-CNN BiLSTM model,” Energy Reports, vol. 9, pp. 1299–1306, 2023, doi: 10.1016/j.egyr.2023.05.121.

O. M. Oyewola, A. A. Awonusi, and O. S. Ismail, “Design optimization of Air-Cooled Li-ion battery thermal management system with Step-like divergence plenum for electric vehicles,” Alexandria Eng. J., vol. 71, pp. 631–644, 2023, doi: 10.1016/j.aej.2023.03.089.

S. Pannerselvam, Va. Narayanan, and T. Gireesh Kumar, “Energy efficient machine learning based SMART-A-BLE implemented Wireless Battery Management System for both Hybrid Electric Vehicles and Battery Electric Vehicles,” Procedia Comput. Sci., vol. 218, pp. 235–248, 2023, doi: 10.1016/j.procs.2023.01.006.

S. Jin, Q. Gao, X. Gao, Y. Gao, and T. Zhang, “Study on dual flow medium system for battery thermal management of electric vehicle,” Case Stud. Therm. Eng., vol. 35, p. 102023, 2022, doi: 10.1016/j.csite.2022.102023.

V. Selvaraj and I. Vairavasundaram, “Flyback converter employed non-dissipative cell equalization in electric vehicle lithium-ion batteries,” e-Prime - Adv. Electr. Eng. Electron. Energy, vol. 5, p. 100278, 2023, doi: 10.1016/j.prime.2023.100278.

X. Yin, J. Fang, A. Wang, Y. Song, F. Cao, and X. Wang, “A novel CO2 thermal management system with battery two-phase (evaporative) cooling for electric vehicles,” Results Eng., vol. 16, p. 100735, 2022, doi: 10.1016/j.rineng.2022.100735.

Z. Wang, X. Zhao, H. Zhang, D. Zhen, F. Gu, and A. Ball, “Active acoustic emission sensing for fast co-estimation of state of charge and state of health of the lithium-ion battery,” J. Energy Storage, vol. 64, p. 107192, 2023, doi: 10.1016/j.est.2023.107192.

D. Fang et al., “Performance simulation method and state of health estimation for lithium-ion batteries based on aging-effect coupling model,” Green Energy Intell. Transp., vol. 2, no. 3, p. 100082, 2023, doi: 10.1016/j.geits.2023.100082.

E. D. Festijo, D. E. O. Juanico, P. V. Nonat, X. Galapia, and K. M. S. Malab, “Acoustic non-invasive estimation of lead–acid battery state of health: Applications for cell-level charge balancing,” Energy Reports, vol. 8, pp. 372–377, 2022, doi: 10.1016/j.egyr.2022.10.242.

J. Fogelquist and X. Lin, "Data selection framework for battery state of health related parameter estimation under system uncertainties," eTransportation, vol. 18, p. 100283, 2023.

M. Rashid, M. Faraji-Niri, J. Sansom, M. Sheikh, D. Widanage, and J. Marco, “Dataset for rapid state of health estimation of lithium batteries using EIS and machine learning: Training and validation,” Data in Brief, vol. 48, p. 109157, 2023, doi: 10.1016/j.dib.2023.109157.

J. Zhu et al., “A method to prolong lithium-ion battery life during the full life cycle,” Cell Reports Phys. Sci., vol. 4, no. 7, p. 101464, 2023, doi: 10.1016/j.xcrp.2023.101464.

Z. Xia and J. A. Abu Qahouq, “Evaluation of Parameter Variations of Equivalent Circuit Model of Lithium-ion Battery under Different SOH Conditions,” ECCE 2020 - IEEE Energy Convers. Congr. Expo., no. 1, pp. 1519–1523, 2020, doi: 10.1109/ECCE44975.2020.9236339.

N. A. Azis, E. Joelianto, and A. Widyotriatmo, “State of Charge (SoC) and State of Health (SoH) Estimation of Lithium-Ion Battery Using Dual Extended Kalman Filter Based on Polynomial Battery Model,” Proc. 2019 6th Int. Conf. Instrumentation, Control. Autom. ICA 2019, pp. 88–93, 2019, doi: 10.1109/ICA.2019.8916734.

L. Ling and Y. Wei, “State-of-Charge and State-of-Health Estimation for Lithium-Ion Batteries Based on Dual Fractional-Order Extended Kalman Filter and Online Parameter Identification,” IEEE Access, vol. 9, pp. 47588–47602, 2021, doi: 10.1109/ACCESS.2021.3068813.

Z. He, X. Guo, S. Hu, W. Li, and X. Ni, “Hybrid Estimation Strategy for the State of Health of Lithiumion Batteries with Different Application Needs,” Int. J. Electrochem. Sci., vol. 17, no. 8, p. 220823, 2022, doi: 10.20964/2022.08.30.

Q. Zhang, “Research on Evaluating the Health of Lithium-ion Battery Based on Double Kalman Filter Algorithm,” Proc. 2020 IEEE Int. Conf. Artif. Intell. Comput. Appl. ICAICA 2020, pp. 1324–1327, 2020, doi: 10.1109/ICAICA50127.2020.9181874.

R. Hickey and T. M. Jahns, “Direct Comparison of State-of-Charge and State-of-Energy Metrics for Li-Ion Battery Energy Storage,” 2019 IEEE Energy Convers. Congr. Expo. ECCE 2019, pp. 2466–2470, 2019, doi: 10.1109/ECCE.2019.8912696.

R. Xiong, L. Li, and Q. Yu, “Improved single particle model based state of charge and capacity monitoring of lithium-ion batteries,” IEEE Veh. Technol. Conf., pp. 1–5, 2019, doi: 10.1109/VTCSpring.2019.8746690.

S. M. Qaisar, “Event-driven approach for an efficient coulomb counting based li-ion battery state of charge estimation,” Procedia Comput. Sci., vol. 168, pp. 202–209, 2020, doi: 10.1016/j.procs.2020.02.268.

M. Ahmeid, M. Muhammad, S. Lambert, P. S. Attidekou, and Z. Milojevic, “A rapid capacity evaluation of retired electric vehicle battery modules using partial discharge test,” J. Energy Storage, vol. 50, p. 104562, 2022, doi: 10.1016/j.est.2022.104562.

H. Ma, Y. Deng, W. W. Liu, T. Li, and H. Zhang, “State of health estimation of retired battery for echelon utilization based on charging curve,” Procedia CIRP, vol. 105, pp. 458–463, 2022, doi: 10.1016/j.procir.2022.02.076.

S. Bockrath, V. Lorentz, and M. Pruckner, “State of health estimation of lithium-ion batteries with a temporal convolutional neural network using partial load profiles,” Appl. Energy, vol. 329, p. 120307, 2023, doi: 10.1016/j.apenergy.2022.120307.

R. Youssef, T. Kalogiannis, H. Behi, A. Pirooz, J. Van Mierlo, and M. Berecibar, “A comprehensive review of novel cooling techniques and heat transfer coolant mediums investigated for battery thermal management systems in electric vehicles,” Energy Reports, vol. 10, pp. 1041–1068, 2023, doi: 10.1016/j.egyr.2023.07.041.

E. Schaltz, D. I. Stroe, K. Norregaard, B. Johnsen, and A. Christensen, “Partial charging method for lithium-ion battery state-of-health estimation,” 2019 14th Int. Conf. Ecol. Veh. Renew. Energies, EVER 2019, pp. 4–8, 2019, doi: 10.1109/EVER.2019.8813645.

H. Dong, L. Mao, K. Qu, J. Zhao, F. Li, and L. Jiang, “State of Health Estimation and Remaining Useful Life Estimation for Li-ion Batteries Based on a Hybrid Kernel Function Relevance Vector Machine,” Int. J. Electrochem. Sci., vol. 17, no. 11, p. 221135, 2022, doi: 10.20964/2022.11.25.

F. A. Shah, S. Shahzad Sheikh, U. I. Mir, and S. Owais Athar, “Battery health monitoring for commercialized electric vehicle batteries: Lithium-ion,” 5th Int. Conf. Power Gener. Syst. Renew. Energy Technol. PGSRET 2019, pp. 1–6, 2019, doi: 10.1109/PGSRET.2019.8882735.

M. Mussi, L. Pellegrino, M. Restelli, and F. Trovò, “A voltage dynamic-based state of charge estimation method for batteries storage systems,” J. Energy Storage, vol. 44, p. 103309, 2021, doi: 10.1016/j.est.2021.103309.

W. Ma, P. Cai, F. Sun, X. Wang, and J. Gong, “State of Health Estimation for Lithium-ion batteries Based on Extreme Learning Machine with Improved Blinex Loss,” Int. J. Electrochem. Sci., vol. 17, no. 11, p. 221170, 2022, doi: 10.20964/2022.11.73.

Y. Zheng, J. Hu, J. Chen, H. Deng, and W. Hu, “State of health estimation for lithium battery random charging process based on CNN-GRU method,” Energy Reports, vol. 9, pp. 1–10, 2023, doi: 10.1016/j.egyr.2022.12.093.

Y. Che, Y. Zheng, X. Sui, and R. Teodorescu, “Boosting battery state of health estimation based on self-supervised learning,” J. Energy Chem., vol. 84, pp. 335–346, 2023, doi: 10.1016/j.jechem.2023.05.034.

A. Rocha Azevedo, D. Benhaiem, J.-L. Sanchez, K. Reeves, and M. Salanne, “Transferring state of health estimation neural networks for different battery chemistries and charging protocols using renormalization and transfer learning,” Next Energy, vol. 1, no. 1, p. 100013, 2023, doi: 10.1016/j.nxener.2023.100013.

X. Feng et al., “Online State-of-Health Estimation for Li-Ion Battery Using Partial Charging Segment Based on Support Vector Machine,” IEEE Trans. Veh. Technol., vol. 68, no. 9, pp. 8583–8592, 2019, doi: 10.1109/TVT.2019.2927120.

K. Wen, X. Fu, and F. Pei, “Research on the thermal management safety of the fast charging power battery management system,” Energy Reports, vol. 10, pp. 3289–3296, 2023, doi: 10.1016/j.egyr.2023.09.130.

M. Habib, E. Bollin, and Q. Wang, “Edge-based solution for battery energy management system: Investigating the integration capability into the building automation system,” J. Energy Storage, vol. 72, p. 108479, 2023, doi: 10.1016/j.est.2023.108479.

H. M. Ali, “Thermal management systems for batteries in electric vehicles: A recent review,” Energy Reports, vol. 9, pp. 5545–5564, 2023, doi: 10.1016/j.egyr.2023.04.359.

C. Zhang et al., “Real-time estimation of negative electrode potential and state of charge of lithium-ion battery based on a half-cell-level equivalent circuit model,” J. Energy Storage, vol. 51, p. 104362, 2022, doi: 10.1016/j.est.2022.104362.

P. Venegas, D. Gómez, M. Arrinda, M. Oyarbide, H. Macicior, and A. Bermúdez, “Kalman filter and classical Preisach hysteresis model applied to the state of charge battery estimation,” Comput. Math. with Appl., vol. 118, pp. 74–84, 2022, doi: 10.1016/j.camwa.2022.05.009.

J. Schmitt, M. Schindler, A. Oberbauer, and A. Jossen, “Determination of degradation modes of lithium-ion batteries considering aging-induced changes in the half-cell open-circuit potential curve of silicon–graphite,” J. Power Sources, vol. 532, p. 231296, 2022, doi: 10.1016/j.jpowsour.2022.231296.

Z.-Y. Chen et al., “Benign-to-malignant transition in external short circuiting of lithium-ion batteries,” Cell Reports Phys. Sci., vol. 3, no. 6, p. 100923, 2022, doi: 10.1016/j.xcrp.2022.100923.

Q. LIU and Q. YU, “The lithium battery SOC estimation on square root unscented Kalman filter,” Energy Reports, vol. 8, pp. 286–294, 2022, doi: 10.1016/j.egyr.2022.05.079.

M. Bruch, L. Millet, J. Kowal, and M. Vetter, “Novel method for the parameterization of a reliable equivalent circuit model for the precise simulation of a battery cell’s electric behavior,” J. Power Sources, vol. 490, p. 229513, 2021, doi: 10.1016/j.jpowsour.2021.229513.

M. S. Ahmed, B. Balasingam, and K. R. Pattipati, “Experimental data on open circuit voltage characterization for Li-ion batteries,” Data in Brief, vol. 36, p. 107071, 2021, doi: 10.1016/j.dib.2021.107071.

T. Puleston, A. Cecilia, R. Costa-Castelló, and M. Serra, “Vanadium redox flow batteries real-time State of Charge and State of Health estimation under electrolyte imbalance condition,” J. Energy Storage, vol. 68, p. 107666, 2023, doi: 10.1016/j.est.2023.107666.

Z. Ren and C. Du, “A review of machine learning state-of-charge and state-of-health estimation algorithms for lithium-ion batteries,” Energy Reports, vol. 9, pp. 2993–3021, 2023, doi: 10.1016/j.egyr.2023.01.108.

Q. Li, “Design and practical application analysis of thermal management system for power battery in new energy vehicles,” Results Phys., vol. 54, p. 107063, 2023, doi: 10.1016/j.rinp.2023.107063.

H. Xu, Y. Duo, and T. Tang, “Development of an edge-cloud collaboration framework for fission battery management system,” Int. J. Adv. Nucl. React. Des. Technol., vol. 4, no. 4, pp. 177–186, 2022, doi: 10.1016/j.jandt.2022.11.002.

A. Moosavi, A. L. Ljung, and T. S. Lundström, “A study on the effect of cell spacing in large-scale air-cooled battery thermal management systems using a novel modeling approach,” J. Energy Storage, vol. 72, p. 108418, 2023, doi: 10.1016/j.est.2023.108418.

A. H. A. AL-Jumaili, R. C. Muniyandi, M. K. Hasan, M. J. Singh, J. K. S. Paw, and M. Amir, “Advancements in intelligent cloud computing for power optimization and battery management in hybrid renewable energy systems: A comprehensive review,” Energy Reports, vol. 10, pp. 2206–2227, 2023, doi: 10.1016/j.egyr.2023.09.029.

M. Koller, G. Glanz, R. Jaber, and A. Bergmann, “Ultrasonic Battery Management System for Lamb wave mode tracking on Lithium-ion pouch cells,” J. Energy Storage, vol. 74, p. 109347, 2023, doi: 10.1016/j.est.2023.109347.

J. Jia, S. Yuan, Y. Shi, J. Wen, X. Pang, and J. Zeng, “Improved sparrow search algorithm optimization deep extreme learning machine for lithium-ion battery state-of-health prediction,” iScience, vol. 25, no. 4, p. 103988, 2022, doi: 10.1016/j.isci.2022.103988.

S. Jenu, A. Hentunen, J. Haavisto, and M. Pihlatie, “State of health estimation of cycle aged large format lithium-ion cells based on partial charging,” J. Energy Storage, vol. 46, p. 103855, 2022, doi: 10.1016/j.est.2021.103855.

J. Kuchly et al., “Li-ion battery SOC estimation method using a neural network trained with data generated by a P2D model,” IFAC-PapersOnLine, vol. 54, no. 10, pp. 336–343, 2021, doi: 10.1016/j.ifacol.2021.10.185.

W. Li, M. Rentemeister, J. Badeda, D. Jöst, D. Schulte, and D. U. Sauer, “Digital twin for battery systems: Cloud battery management system with online state-of-charge and state-of-health estimation,” J. Energy Storage, vol. 30, p. 101557, 2020, doi: 10.1016/j.est.2020.101557.

K. El Mezdi et al., “Performance improvement through nonlinear control design and power management of a grid-connected wind-battery hybrid energy storage system,” Results Eng., vol. 20, p. 101491, 2023, doi: 10.1016/j.rineng.2023.101491.

S. M. Qaisar and M. Alqathanii, “Event-driven sampling based li-ion batteries SoH estimation in the 5G framework,” Procedia Comput. Sci., vol. 182, pp. 109–114, 2021, doi: 10.1016/j.procs.2021.02.015.

J. A. Braun, D. Schmider, and W. G. Bessler, “State of charge and state of health diagnosis of batteries with voltage-controlled models,” vol. 544, p. 231828, 2022, doi: 10.1016/j.jpowsour.2022.231828.

Z. Hussain et al., “Construction of rechargeable bio-battery cells from electroactive antioxidants extracted from wasted vegetables,” Clean. Eng. Technol., vol. 5, p. 100342, 2021, doi: 10.1016/j.clet.2021.100342.

M. Schmid and C. Endisch, “Online diagnosis of soft internal short circuits in series-connected battery packs using modified kernel principal component analysis,” J. Energy Storage, vol. 53, p. 104815, 2022, doi: 10.1016/j.est.2022.104815.

K. Ranasinghe et al., “Advances in Integrated System Health Management for mission-essential and safety-critical aerospace applications,” Prog. Aerosp. Sci., vol. 128, p. 100758, 2022, doi: 10.1016/j.paerosci.2021.100758.

C. Stolze, P. Rohland, K. Zub, O. Nolte, M. D. Hager, and U. S. Schubert, “A low-cost amperometric sensor for the combined state-of-charge, capacity, and state-of-health monitoring of redox flow battery electrolytes,” Energy Convers. Manag. X, vol. 14, p. 100188, 2022, doi: 10.1016/j.ecmx.2022.100188.

D. Pandit et al., “Search for coherent bremsstrahlung from spontaneous fission at 555 meter deep underground laboratory,” Phys. Lett. Sect. B Nucl. Elem. Part. High-Energy Phys., vol. 823, p. 136760, 2021, doi: 10.1016/j.physletb.2021.136760.

Z. Xia and J. A. Abu Qahouq, “Ageing characterization data of lithium-ion battery with highly deteriorated state and wide range of state-of-health,” Data in Brief, vol. 40, p. 107727, 2022, doi: 10.1016/j.dib.2021.107727.

K. Mc Carthy, H. Gullapalli, K. M. Ryan, and T. Kennedy, “Electrochemical impedance correlation analysis for the estimation of Li-ion battery state of charge, state of health and internal temperature,” J. Energy Storage, vol. 50, p. 104608, 2022, doi: 10.1016/j.est.2022.104608.

E. Galiounas, T. G. Tranter, R. E. Owen, J. B. Robinson, P. R. Shearing, and D. J. L. Brett, “Energy and AI Battery state-of-charge estimation using machine learning analysis of ultrasonic signatures,” Energy AI, vol. 10, p. 100188, 2022, doi: 10.1016/j.egyai.2022.100188.

H. You et al., “Nonlinear health evaluation for lithium-ion battery within full-lifespan,” J. Energy Chem., vol. 72, pp. 333–341, 2022, doi: 10.1016/j.jechem.2022.04.013.

A. Legala and X. Li, “Energy and AI Hybrid data-based modeling for the prediction and diagnostics of Li-ion battery thermal behaviors,” Energy AI, vol. 10, p. 100194, 2022, doi: 10.1016/j.egyai.2022.100194.

E. Vanem, C. B. Salucci, A. Bakdi, and Ø. Å. shei. Alnes, “Data-driven state of health modelling—A review of state of the art and reflections on applications for maritime battery systems,” J. Energy Storage, vol. 43, p. 103158, 2021, doi: 10.1016/j.est.2021.103158.

S. Pratap Singh, P. Prakash Singh, S. Niwas Singh, and P. Tiwari, “State of charge and health estimation of batteries for electric vehicles applications: key issues and challenges,” Glob. Energy Interconnect., vol. 4, no. 2, pp. 145–157, 2021, doi: 10.1016/j.gloei.2021.05.003.

Q. Huang et al., “Experimental design of paraffin/methylated melamine-formaldehyde microencapsulated composite phase change material and the application in battery thermal management system,” J. Mater. Sci. Technol., vol. 169, pp. 124–136, 2024, doi: 10.1016/j.jmst.2023.06.018.

R. J. J. Molu, S. Raoul Dzonde Naoussi, P. Wira, W. F. Mbasso, S. T. Kenfack, and S. Kamel, “Optimization-based energy management system for grid-connected photovoltaic/battery microgrids under uncertainty,” Case Stud. Chem. Environ. Eng., vol. 8, p. 100464, 2023, doi: 10.1016/j.cscee.2023.100464.




DOI: https://doi.org/10.18196/jrc.v4i6.20401

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Lora Khaula Amifia, Muhammad Adib Kamali

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik