The Use of Arduino and PID Control Approach for the Experimental Setup of HVAC Temperature Testing

Vincenzo Ballerini, Cesare Biserni, Giampietro Fabbri, Paolo Guidorzi, Eugenia Rossi di Schio, Paolo Valdiserri

Abstract


The experimental setup of HVAC testing requires easy but accurate instrumentation, and recent analyses focus on the control based on the mean radiant temperature in order to better perform respect to the users satisfaction. Indeed, the research contribution of this work is the use of Arduino to develop a PID control for an electric heater. As a main feature, this control system can operate by maintaining the set-point on the air temperature or on the mean radiant temperature of the environment where it is placed. The paper describes the design and development of the PID control, as well as the testing of the control system applied to an electric heater, to heat a room in a laboratory in Bologna (Italy). In an Appendix the Matlab script employed to store data on the local pc an to send data to Google Sheets is reported, together with the Google script code employed to write the data from Matlab to the online sheet. As result, the developed PID is accurate in maintaining the required set-point temperature, with minimal deviations from the set-point, in the interval ± 0.2 K.

Keywords


Arduino; PID Control; Experimental Setup; HVAC Testing; Matlab; Google Script; Air Temperature; Mean Radiant Temperature.

Full Text:

PDF

References


P. Valdiserri, S. Cesari, M. Coccagna, P. Romio, and S. Mazzacane, “Experimental data and simulations of performance and thermal comfort in a patient room equipped with radiant ceiling panels,” Buildings, vol. 10, no. 12, p. 235, 2020.

G. Joe and S. Park, "A Study on Establishing Thermal Output Conditions of Radiant Ceiling Heating Panels for Improving Thermal Comfort of Perimeter Zone in Buildings," Applied Sciences, vol. 13, no. 11, p. 6744, 2023.

H. Guo, E. Teitelbaum, N. Houchois, M. Bozlar, and F. Meggers, “Revisiting the use of globe thermometers to estimate radiant temperature in studies of heating and ventilation,” Energy Build., vol. 180, pp. 83-94, 2018.

P. Aparicio, J. M. Salmerón, Á. Ruiz, F. J. Sánchez, and L. Brotas, “The globe thermometer in comfort and environmental studies in buildings,” Revista de la Construcción, vol. 15 - 3, pp. 57-66, 2016.

F. A. Obando Vega, A. P. Montoya Ríos, J. A. Osorio Saraz, L. G. Vargas Quiroz, and F. Alves Damasceno, “Assessment of Black Globe Thermometers Employing Various Sensors and Alternative Materials,” Agric. For. Meteorol., vol. 284, p. 107891, 2020.

S. Privara, J. Široký, L. Ferkl, and J. Cigler, “Model predictive control of a building heating system: The first experience,” Energy Build., vol. 43, no. 2-3, pp. 564-572, 2011.

A. E. Ruano and P. M. Ferreira, “Neural network based hvac predictive control,” IFAC Proc. Volumes, vol. 47, no. 3, pp. 3617-3622, 2014.

G. Fabbri, “Temperature Control of High Power Electronic Devices at Minimum Ventilation Power,” IFAC Proc. Volumes, vol. 38, no. 1, pp. 225-232, 2005.

G. Fabbri, “High power electronic devices cooling at minimum ventilation power,” Heat. Mass. Transf., vol. 44, pp. 305-314, 2008.

G. Lorenzini, C. Biserni, E. da Silva Diaz Estrada, E. Domingues Dos Santos, L. André Isoldi, and L.A. Oliveira Rocha, “Genetic algorithm applied to geometric optimization of isothermal Y-shaped cavities,” J. Electron. Packag., vol. 136, no. 3, p. 031011, 2014.

C. Naldi, M. Dongellini, G. L. Morini, and E. R. di Schio, “The adoption of pressure independent control valves (PICVs) for the simultaneous optimization of energy consumption and comfort in buildings,” Energy Build., vol. 287, p. 112969, 2023.

V. V. Saurin, G. V. Kostin, A. Rauh, and H. Aschemann, “Adaptive control strategies in heat transfer problems with parameter uncertainties based on a projective approach” Modeling, Design, and Simulation of Systems with Uncertainties, pp. 309-332, 2011.

R. P. Borase et al., “A review of PID control, tuning methods and applications,” Int. J. Dynam. Control, vol. 9, pp. 818–827, 2021.

A. Kherkhar, Y. Chiba, A. Tlemçani, and H. Mamur, “Thermal investigation of a thermoelectric cooler based on Arduino and PID control approach,” Case Studies in Thermal Engineering, vol. 36, p. 102249, 2022.

D. Bista. Understanding and Design of an Arduino-based PID Controller. VCU University Archives, 2016.

P. Chotikunnan and R. Chotikunnan, “Dual design PID controller for robotic manipulator application,” Journal of Robotics and Control (JRC), vol. 4, no. 1, pp. 23-34, 2023.

A. Ma'arif and A. Çakan, "Simulation and arduino hardware implementation of dc motor control using sliding mode controller," Journal of Robotics and Control (JRC), vol. 2, no. 6, pp. 582-587, 2021.

A. Ma'arif and N. R. Setiawan. "Control of DC motor using integral state feedback and comparison with PID: simulation and arduino implementation,” Journal of Robotics and Control (JRC), vol. 2, no. 5, pp. 456-461, 2021.

A. Latif, A. Zuhri Arfianto, H. Agus Widodo, R. Rahim, and E. T. Helmy, “Motor DC PID System Regulator for Mini Conveyor Drive Based-on Matlab,” Journal of Robotics and Control (JRC), vol. 1, no. 6, pp. 185-190, 2020.

M. Khalifa, A. Amhedb, and M. Al Sharqawi “Real Time DC Motor Position Control Using PID Controller in LabVIEW,” Journal of Robotics and Control (JRC), vol. 2, no. 5, pp. 342-348, 2021.

M. Islam, M. Hossain, and S. Banik, “Synchronizing of Stabilizing Platform Mounted on a Two-Wheeled Robot,” Journal of Robotics and Control (JRC), vol. 2, no. 6, pp. 552-558, 2021.

A. Di Gilio, J. Palmisani, M. Pulimeno, F. Cerino, M. Cacace, A. Miani, and G. de Gennaro, "CO2 concentration monitoring inside educational buildings as a strategic tool to reduce the risk of Sars-CoV-2 airborne transmission,” Environmental Research, vol. 202, p. 111560, 2021.

F. AICVF and M. AIIRM. The Federation of European Heating, Ventilation and Air conditioning Associations. REHVA, 2014.

P. Valdiserri, C. Biserni, and M. Garai, “Energy performance of a ventilation system for an apartment according to the Italian regulation,” Int. J. Energy Environ. Eng., vol. 7, pp. 353-359, 2016.

H. C. Martínez-Hernández, R. Cortes-Maldonado, R. Morales-Caporal, and A. Islas-Cerón, “Indoor CO2 monitoring system using a microcontroller via Bluetooth for coronavirus prevention,” Revista de la Invención Técnica, pp 27-33, 2020.

L. Loreti, P. Valdiserri, and M. Garai, “Dynamic simulation on energy performance of a school,” Energy Procedia, vol. 101, pp. 1026-1033, 2016.

M. Coccagna, S. Cesari, P. Valdiserri, P. Romio, and S. Mazzacane, “Impact of Morphological and Functional Features on Hospitals’ Energy Consumption: A Comparative Analysis of Six Case Studies,” WSEAS Transactions on Environment and Development, vol. 14, pp. 212-225, 2018.

I. G. M. N. Desnanjaya, A. A. S. Pradhana, I. N. T. A. Putra, S. Widiastutik, and I. M. A. Nugraha, “Integrated Room Monitoring and Air Conditioning Efficiency Optimization Using ESP-12E Based Sensors and PID Control Automation: A Comprehensive Approach,” Journal of Robotics and Control (JRC), vol. 4, no. 6, pp. 832-839, 2023.

Z. B. Abdullah, S. W. Shneen, and H. S. Dakheel, “Simulation Model of PID Controller for DC Servo Motor at Variable and Constant Speed by Using MATLAB,” Journal of Robotics and Control (JRC), vol. 4 pp. 54–59, 2023.

M. P. T. Sulistyanto et al., “Indoor Temperature Control And Energy Saving Potential of Split-Type Air Conditioning System Using Fuzzy Logic Controller,” J. Teknol., vol. 78, pp. 89–96, 2016.

L. Russi, P. Guidorzi, B. Pulvirenti, D. Aguiari, G. Pau, and G. Semprini, “Air quality and comfort characterisation within an electric vehicle cabin in heating and cooling operations,” Sensors, vol. 22, no. 2, pp. 543, 2022.

Y. Irawan, A. Febriani, R. Wahyuni, and Y. Devis, “Water Quality Measurement and Filtering Tools Using Arduino Uno, PH Sensor and TDS Meter Sensor,” Journal of Robotics and Control (JRC), vol. 2, no. 5, pp. 357-362, 2021.

R. Wahyuni, J. Sentana, M. Muhardi, and Y. Irawan, “Water Level Control Monitoring Based On Arduino Uno R3 Atmega 238p Using Lm016l LCD at STMIK Hang Tuah Pekanbaru,” Journal of Robotics and Control (JRC), vol. 2, no. 4, pp. 265-269, 2021.

I. Prasojo, A. Maseleno, O. Tanane, and N. Shahu, “Design of Automatic Watering System Based on Arduino,” Journal of Robotics and Control (JRC), vol. 1, no. 2, pp. 59-63, 2020.

P. Megantoro, A. Widjanarko, R. Rahim, K. Kunal, and A. Zuhri Arfianto, “The Design of Digital Liquid Density Meter Based on Arduino,” Journal of Robotics and Control (JRC), vol. 1, no. 1, pp. 1-6, 2020.

N. Hudha Wijaya, M. Ibrahim, N. Shahu, and M. Usman Sattar, “Arduino-based Digital Advanced Audiometer,” Journal of Robotics and Control (JRC), vol. 2, no. 2, pp. 83-87, 2021.

R. Perkasa, R. Wahyuni, R. Melyanti, and Y. Irawan, “Light Control Using Human Body Temperature Based on Arduino Uno and PIR (Passive Infrared Receiver) Sensor,” Journal of Robotics and Control (JRC), vol. 2, no. 4, pp. 307-310, 2021.

M. Hariyanto, A. Hendri Hendrawan, and R. Ritzkal, “Monitoring the Environmental Temperature of the Arduino Assistance Engineering Faculty Using Telegram,” Journal of Robotics and Control (JRC), vol. 1, no. 3, pp. 96-101, 2020.

N. Hudha Wijaya, D. Friska Novela, N. Shahu, M. Usman Sattar, “Arduino-based Mini Shaker for Automatic Chemical Solution Mixer,” Journal of Robotics and Control (JRC), vol. 1, no. 6, pp. 220-223, 2020.

A. J. Susilo, A. Febriani, U. Rahmalisa, and Y. Irawan, “Car Parking Distance Controller Using Ultrasonic Sensors Based On Arduino Uno,” Journal of Robotics and Control (JRC), vol. 2, no. 5, pp. 353-356, 2021.

A. Daoud, “An Arduino-based low-cost hardware for temperature control,” WSEAS Trans. Syst., vol. 20, pp. 54-66, 2021.

UNI EN. Ergonomics of the Thermal Environment - Instruments for Measuring Physical Quantities. International Organization for Standardization: Geneva, Switzerland, 2001.

B. Beauregard. Arduino PID library v 1.2.0. Github, 2023.

MathWorks. MATLAB, version R2023a. MathWorks: Natick, MA, USA, 2023.

ARPAE. Environmental Protection Agency of Emilia-Romagna. ARPA Emilia-Romagna, 2023.

M. Dongellini, P. Valdiserri, C. Naldi, and G. L. Morini, “The Role of Emitters, Heat Pump Size, and Building Massive Envelope Elements on the Seasonal Energy Performance of Heat Pump-Based Heating Systems,” Energies, vol. 13, no. 19, p. 5098, 2020.

M. Kintner-Meyer and A. F. Emery, “Optimal control of an HVAC system using cold storage and building thermal capacitance,” Energy and Buildings, vol. 23, no. 1, pp. 19-31, 1995.

E. Rossi di Schio, V. Ballerini, M. Dongellini, and P. Valdiserri, “Defrosting of air-source heat pumps: Effect of real temperature data on seasonal energy performance for different locations in Italy,” Applied Sciences, vol. 11, no. 17, p. 8003, 2021.

E. Rossi di Schio and V. Ballerini, “The scop of an air source heat pump: Comparison between on-off and inverter heat pump,” JP Journal of Heat and Mass Transfer, vol. 24, no. 1, pp. 79-86, 2021.

A. K. Mishra, M. Loomans, and J. L. M. Hensen, "Thermal comfort of heterogeneous and dynamic indoor conditions—An overview,” Building and Environment, vol. 109, pp. 82-100, 2016.

L. Maohui et al., "The dynamics of thermal comfort expectations: The problem, challenge and impication,” Building and Environment, vol. 95, pp. 322-329, 2016.

D. Enescu, “A review of thermal comfort models and indicators for indoor environments,” Renewable and Sustainable Energy Reviews, vol. 79, pp. 1353-1379, 2017.

P. O. Fanger. Thermal comfort. Danish Technical Press, 1970.

I. Lamont. Google Drive and Docs in 30 Minutes: The unofficial guide to the new Google Drive, Docs, Sheets & Slides. i30 Media Corporation, 2015.




DOI: https://doi.org/10.18196/jrc.v5i2.20915

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Vincenzo Ballerini, Cesare Biserni, Giampietro Fabbri, Paolo Guidorzi, Eugenia Rossi di Schio, Paolo Valdiserri

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik