Optimization of Proportional Integral Derivative Controller for Omni Robot Wheel Drive by Using Integrator Wind-up Reduction Based on Arduino Nano

Supriadi Supriadi, Agusma Wajiansyah, Mohammad Zainuddin, Arief Bramanto Wicaksono Putra

Abstract


The experimental object used is a three-wheeled omni-robot frame, where the wheel axes have an angle difference of 120 degrees from each other. The Omni wheels have a diameter of 48 mm connected to the DC motor axis through a gearbox, which has a ratio of 80 to 1. Each wheel has been controlled using a proportional plus integral plus derivative (PID) controller embedded in a microcontroller, which is an Arduino nano board. The motor axis is equipped with a two-phase optical encoder that definitively generates four cycles per revolution for wheel speed acquisition as the controller input. The wheel speed control signal is distributed to the wheel through the H bridge as the controller output. The controller constants have been directly tuned to the robot frame's physical omni-wheel speed control system. The controller is tuned to minimize steady-state error, achieve fast settling times, and minimize overshoot. The best constants obtained are 1.5 (proportional), 0.012 (integral), and 10 (derivative). Using a tolerance band of +/- 2.5%, the system achieved a settling time of 1.1 seconds and a steady-state error of 0.3%. The control system is unstable when the actuator is saturated, which produces oscillations. Controller optimization has been successful by using integrator wind-up reduction. The steady-state average error was reduced to 9.95% without oscillation after optimization, compared to 46.37% with oscillations before optimization. The controller has been validated with speed-tracking tests on all velocity vector regions. The robot frame has been tested with basic maneuvers such as rotation, concerning, forward, and sideways.

Keywords


Physical Hardware; Manual-Tuning; PID; Integrator Wind-Up; Omni Wheel, Omni Robot; CLI; Arduio Nano; Encoder; CPR; PWM.

Full Text:

PDF

References


M. A. A. Mutalib and N. Z. Azlan, “Prototype development of mecanum wheels mobile robot: A review,” Applied Research and Smart Technology (ARSTech), vol. 1, no. 2, pp. 71–82, 2020, doi: 10.23917/arstech.v1i2.39.

J. Holland, L. M. Kingston, C. Mccarthy, E. Armstrong, P. O'dwyer, F. Merz, and M. Mcconnell, "Service Robots in the Healthcare Sector," Robotics, vol. 10, no. 1, p. 47, 2021, doi: 10.3390/robotics10010047.

D. H. T. Kim, T. N. Manh, C. N. Manh, N. D.c Nguyen, D. P. Tien, M. T. Van, and M. P. Xuan, "Adaptive Control for Uncertain Model of Omni-directional Mobile Robot Based on Radial Basis Function Neural Network," SpringerLink, International Journal of Control, Automation and Systems, vol. 19, pp. 1715–1727, 2021, doi: 10.1007/s12555-019-1004-6.

T. T. Tun, L. Huang, R. E. Mohan, and S. G. H. Matthew, “Four-wheel steering and driving mechanism for a reconfigurable floor cleaning robot,” Automation in Construction, vol. 106, 2019, doi: 10.1016/j.autcon.2019.03.017.

T. Terakawa, M. Komori, Y. Yamaguchi, and Y. Nishida, "Active omni wheel possessing seamless periphery and omnidirectional vehicle using it," Precision Engineering, vol. 56, pp. 466-475, 2019, doi: 10.1016/j.precisioneng.2019.02.003.

M. Seder et al., "Open Platform Based Mobile Robot Control for Automation in Manufacturing,” IFAC-PapersOnLine, vol. 52, no. 22, pp. 95-100, 2019, doi: 10.1016/j.ifacol.2019.11.055.

D. Nemec, V. Šimák, A. Janota, M. Hruboš, and E. Bubeníková, "Precise localization of the mobile wheeled robot using sensor fusion of odometry, visual artificial landmarks and inertial sensors," Robotics and Autonomous Systems, vol. 112, pp. 168-177, 2019, doi: 10.1016/j.robot.2018.11.019.

G. Bayar and S. Ozturk, "Investigation of The Effects of Contact Forces Acting on Rollers Of a Mecanum Wheeled Robot," Mechatronics, vol. 72, 2020, doi: 10.1016/j.mechatronics.2020.102467.

S. Mellah, G. Graton, E.-M. E. Adel, M. Ouladsine, and A. Planchais, "Trajectory reconfiguration for time delay reduction in the case of unexpected obstacles: application to 4-mecanum wheeled mobile robots (4-MWMR) for industrial purposes," IFAC-PapersOnLine, vol. 53, pp. 15653-15658, 2020, doi: 10.1016/j.ifacol.2020.12.2546.

H. Taheri and C. X. Zhao, "Omnidirectional mobile robots, mechanisms and navigation approaches," Mechanism and Machine Theory, vol. 153, 2020, doi: 10.1016/j.mechmachtheory.2020.103958.

A. S. Staal et al., "Towards a Collaborative Omnidirectional Mobile Robot in a Smart Cyber-Physical Environment," Procedia Manufacturing, vol. 51, pp. 193-200, 2020, doi: 10.1016/j.promfg.2020.10.028.

M. W. Mehrez, K. Worthmann, J. P. V. Cenerini, M. Osman, W. W. Melek, and S. Jeon, "Model Predictive Control without terminal constraints or costs for holonomic mobile robots," Robotics and Autonomous Systems, vol. 127, 2020, doi: 10.1016/j.robot.2020.103468.

H. Wu, W. Xu, B. Yao, Y. Hu, and H. Feng, "Interacting Multiple Model-Based Adaptive Trajectory Prediction for Anticipative Human Following of Mobile Industrial Robot," Procedia Computer Science, vol. 176, pp. 3692-3701, 2020, doi: 10.1016/j.procs.2020.09.330.

I. M.-Caireta, E. Celaya, and L. Ros, "Model Predictive Control for a Mecanum-wheeled Robot Navigating among Obstacles," IFAC-PapersOnLine, vol. 54, pp. 119-125, 2021, doi: 10.1016/j.ifacol.2021.08.533.

Z. Sun, S. Hu, D. He, W. Zhu, H. Xie, and J. Zheng, "Trajectory-tracking control of Mecanum-wheeled omnidirectional mobile robots using adaptive integral terminal sliding mode," Computers & Electrical Engineering, vol. 96, 2021, doi: 10.1016/j.compeleceng.2021.107500.

Z. Sun, H. Xie, J. Zheng, Z.g Man, and D. He, "Path-following control of Mecanum-wheels omnidirectional mobile robots using nonsingular terminal sliding mode," Mechanical Systems and Signal Processing, vol. 147, 2021, doi: 10.1016/j.ymssp.2020.107128.

G. Peng, Z. Lu, Z. Tan, D. He, and X. Li, "A novel algorithm based on nonlinear optimization for parameters calibration of wheeled robot mobile chasses," Applied Mathematical Modelling, vol. 95, pp. 396-408, 2021, doi: 10.1016/j.apm.2021.02.012.

H. Eschmann, H. Ebel, and P. Eberhard, "Data-Based Model of an Omnidirectional Mobile Robot Using Gaussian Processes," IFAC-PapersOnLine, vol. 54, pp. 13-18, 2021, doi: 10.1016/j.ifacol.2021.08.327.

D. B.-Vásquez, M. M.-Herrera, and J. S. B.-Valencia, "Open source and open hardware mobile robot for developing applications in education and research," HardwareX, vol. 10, 2021, doi: 10.1016/j.ohx.2021.e00217.

B. S. Pallares O., T. A. Rozo M., E. C. Camacho, J. G. Guarnizo, and J. M. Calderon, "Design and Construction of a Cost-Oriented Mobile Robot for Domestic Assistance," IFAC-PapersOnLine, vol. 54, pp. 293-298, 2021, doi: 10.1016/j.ifacol.2021.10.462.

V. L. Popov, N. G. Shakev, A. V. Topalov, and S. A. Ahmed, "Detection and Following of Moving Target by an Indoor Mobile Robot using Multi-sensor Information," IFAC-PapersOnLine, vol. 54, pp. 357-362, 2021, doi: 10.1016/j.ifacol.2021.10.473.

S. Long, T. Terakawa, M. Komori, Y. Nishida, T. Ougino, and Y. Hattori, "Effect of double-row active omni wheel on stability of single-track vehicle in roll direction," Mechanism and Machine Theory, vol. 163, 2021, doi: 10.1016/j.mechmachtheory.2021.104374.

M. U. Shafiq, A. Imran, S. Maznoor, and A. H. Majeed, "Real-time navigation of mecanum wheel-based mobile robot in a dynamic environment," Heliyon, vol. 10, no. 5, 2024, doi: 0.1016/j.heliyon.2024.e26829.

H. Xing, A. Torabi, L. Ding, H. Gao, W. Li, and M. Tavakoli, "Enhancing kinematic accuracy of redundant wheeled mobile manipulators via adaptive motion planning," Mechatronics, vol. 79, 2021, doi: 10.1016/j.mechatronics.2021.102639.

H. Xing, A. Torabi, L. Ding, H. Gao, Z. Deng, V. K. Mushahwar, and M. Tavakoli, "An admittance-controlled wheeled mobile manipulator for mobility assistance: Human–robot interaction estimation and redundancy resolution for enhanced force exertion ability," Mechatronics, vol. 74, 2021, doi: 10.1016/j.mechatronics.2021.102497.

L. Qi, T. Zhang, K. Xu, H. Pan, Z. Zhang, and Y. Yuan, "A novel terrain adaptive omni-directional unmanned ground vehicle for underground space emergency: Design, modeling and tests," Sustainable Cities and Society, vol. 65, 2021, doi: 10.1016/j.scs.2020.102621.

A. S. Belyaev, O. A. Brylev, and E. A. Ivanov, "Slip Detection and Compensation System for Mobile Robot in Heterogeneous Environment," IFAC-PapersOnLine, vol. 54, pp. 339-344, 2021, doi: 10.1016/j.ifacol.2021.10.470.

A. Grabowski, J. Jankowski, and M. Wodzyński, "Teleoperated mobile robot with two arms: the influence of a human-machine interface, VR training and operator age," International Journal of Human-Computer Studies, vol. 156, 2021, doi: 10.1016/j.ijhcs.2021.102707.

P. S. Yadav, V. Agrawal, J. C. Mohanta, and M. D. F. Ahmed, "A robust sliding mode control of mecanum wheel-chair for trajectory tracking," Materials Today: Proceedings, vol. 56, pp. 623-630, 2022, doi: 10.1016/j.matpr.2021.12.398.

H. Xiao, D. Yu, and C. L. P. Chen, "Self-triggered-organized Mecanum-wheeled robots consensus system using model predictive based protocol," Information Sciences, vol. 590, pp. 45-59, 2022, doi: 10.1016/j.ins.2021.12.108.

Z. Miao, F. Zhou, X. Yuan, Y. Xia, and K. Chen, "Multi-heterogeneous sensor data fusion method via convolutional neural network for fault diagnosis of wheeled mobile robot," Applied Soft Computing, vol. 129, 2022, doi: 10.1016/j.asoc.2022.109554.

M. K. Nutalapati, L. Arora, A. Bose, K. Rajawat, R. M. Hegde, "A generalized framework for autonomous calibration of wheeled mobile robots," Robotics and Autonomous Systems, vol. 158, 2022, doi: 10.1016/j.robot.2022.104262.

C. Wang, J. Ji, Z. Miao, and J. Zhou, "Udwadia-Kalaba approach based distributed consensus control for multi-mobile robot systems with communication delays," Journal of the Franklin Institute, vol. 359, pp. 7283-7306, 2022, doi: 10.1016/j.jfranklin.2022.07.046.

O. Oladunjoye et al., "Omnidirectional All-Terrain Screw-Driven Robot Design, Modeling, and Application in Humanitarian Demining," IFAC-PapersOnLine, vol. 55, no. 27, pp. 7-12, 2022, doi: 10.1016/j.ifacol.2022.10.480.

X. Liu et al., "MPC-based high-speed trajectory tracking for 4WIS robot," ISA Transactions, vol. 123, pp. 413-424, 2022, doi: 10.1016/j.isatra.2021.05.018.

Z. Sun, S. Tang, Y.g Zhou, J. Yu, and C. Li, "A GNN for repetitive motion generation of four-wheel omnidirectional mobile manipulator with nonconvex bound constraints," Information Sciences, vol. 607, pp. 537-552, 2022, doi: 10.1016/j.ins.2022.06.002.

T. Ding, Y. Zhang, G. Ma, Z. Cao, X. Zhao, and B. Tao, "Trajectory tracking of redundantly actuated mobile robot by MPC velocity control under steering strategy constraint," Mechatronics, vol. 84, 2022, doi: 10.1016/j.mechatronics.2022.102779.

L. Jiang, S. Wang, Y. Xie, S. Q. Xie, S. Zheng, and J. Meng, "Fractional robust finite time control of four-wheel-steering mobile robots subject to serious time-varying perturbations," Mechanism and Machine Theory, vol. 169, 2022, doi: 10.1016/j.mechmachtheory.2021.104634.

Z. Slanina, "Comprehensive study of parking houses for smart cities," IFAC-PapersOnLine, vol. 55, no. 4, pp. 1-12, 2022, doi: 10.1016/j.ifacol.2022.06.001.

X. Wu and Y. Huang, "Adaptive fractional-order non-singular terminal sliding mode control based on fuzzy wavelet neural networks for omnidirectional mobile robot manipulator," ISA Transactions, vol. 121, pp. 258-267, 2022, doi: 10.1016/j.isatra.2021.03.035.

M. Q. Zaman and H.-M. Wu, "Hand Gesture-based Teleoperation Control of a Mecanum-wheeled Mobile Robot," IFAC-PapersOnLine, vol. 56, no. 2, pp. 1484-1489, 2023, doi: 10.1016/j.ifacol.2023.10.1841.

G. Bayar and G. Hambarci, "Improving measurement accuracy of indoor positioning system of a Mecanum wheeled mobile robot using Monte Carlo - Latin hypercube sampling based machine learning algorithm," Journal of the Franklin Institute, vol. 360, no. 17, pp. 13994-14021, 2023, doi: 10.1016/j.jfranklin.2022.07.037.

D. N. Zakharov et al., "Quality Improvements of Omnidirectional Platforms," IFAC-PapersOnLine, vol. 56, pp. 2140-2145, 2023, doi: 10.1016/j.ifacol.2023.10.1118.

A. A. S. Gunawan, B. Clemons, I. F. Halim, K. Anderson, and M. P. Adianti, "Development of e-butler: Introduction of robot system in hospitality with mobile application," Procedia Computer Science, vol. 216, pp. 67-76, 2023, doi: 10.1016/j.procs.2022.12.112.

Z. Sun, S. Hu, H. Xie, H. Li, J. Zheng, and B. Chen, "Fuzzy adaptive recursive terminal sliding mode control for an agricultural omnidirectional mobile robot," Computers and Electrical Engineering, vol. 105, 2023, doi: 10.1016/j.compeleceng.2022.108529.

J. Cenerini, M. W. Mehrez, J.-w. Han, S. Jeon, and W. Melek, "Model Predictive Path Following Control without terminal constraints for holonomic mobile robots," Control Engineering Practice, vol. 132, 2023, doi: 10.1016/j.conengprac.2022.105406.

F. Mateusz and J. Bałchanowski, "A Mobile Robot with Omnidirectional Tracks—Design and Experimental Research," Applied Sciences, vol. 11, no. 24, 2021, doi: 10.3390/app112411778.

P. Sesmero, Carlos, L. R. Buonocore, and M. D. Castro, "Omnidirectional Robotic Platform for Surveillance of Particle Accelerator Environments with Limited Space Areas," Applied Sciences, vol. 11, no. 14, 2021, doi: 10.3390/app11146631.

P.-J. Chen, S.-Y. Yang, Y.-P. Chen, M. Muslikhin, and M.-S. Wang, "Slip Estimation and Compensation Control of Omnidirectional Wheeled Automated Guided Vehicle," Electronics, vol. 10, no. 7, 2021, doi: 10.3390/electronics10070840.

M. R. Azizi, A. Rastegarpanah, and R. Stolkin, "Motion Planning and Control of an Omnidirectional Mobile Robot in Dynamic Environments," Robotics, vol. 10, no. 1, p. 48, 2021, doi: 10.3390/robotics10010048

C. Wang, X. Liu, X. Yang, F. Hu, A. Jiang, and C. Yang, “Trajectory tracking of an omni-directional wheeled mobile robot using a model predictive control strategy,” Applied Sciences, vol. 8, no. 2, p. 231, 2018.

D. B. Setiawan et al., "Ball Direction Prediction for Wheeled Soccer Robot Goalkeeper Using Trigonometry Technique," Applied Technology and Computing Science Journal, vol. 2, no. 1, pp. 39-51, 2019, doi: 10.33086/atcsj.v2i1.1204.

M. B. Emara, A. W. Youssef, M. Mashaly, J. Kiefer, L. A. Shihata, and E. Azab, "Digital Twinning for Closed-Loop Control of a Three-Wheeled Omnidirectional Mobile Robot," Procedia CIRP, vol. 107, pp. 1245-1250, 2022, doi: 10.1016/j.procir.2022.05.139.

M. Eyuboglu and G. Atali, "A novel collaborative path planning algorithm for 3-wheel omnidirectional Autonomous Mobile Robot," Robotics and Autonomous Systems, vol. 169, 2023, doi: 10.1016/j.robot.2023.104527.

M. D. Correia, A. Gustavo, and S. Conceição, "Modeling of a Three Wheeled Omnidirectional Robot Including Friction Models," IFAC Proceedings Volumes, vol. 45, no. 22, pp. 7-12, 2012, doi: 10.3182/20120905-3-HR-2030.00002.

M. Gavani, D. Tanpure, and P. Falake, "Path Planning of Three Wheeled Omni-Directional Robot Using Bezier Curve Tracing Technique and PID control Algorithm," 2019 IEEE Pune Section International Conference (PuneCon), pp. 1-6, 2019, doi: 10.1109/PuneCon46936.2019.9105899.

N. Z. Zailan, M. A. Ayob, A. S. Sadun, H. M. Poad, R. Sawarno, and N. Rohaziat, "Obstacle Avoidance of a 3WD Omni-Wheel Mobile Robot in Webots Environment," 2021 IEEE 11th International Conference on System Engineering and Technology (ICSET), pp. 143-146, 2021, doi: 10.1109/ICSET53708.2021.9612576.

S. Huang, C. Li, Z. Cai, G. Zhu, L. Yao, and Z. Fan, "Synchronized 2D SLAM and 3D Mapping Based on Three Wheels Omni-directional Mobile Robot," 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 1177-1181, 2019, doi: 10.1109/CYBER46603.2019.9066733.

A. Krishnan and P. Sudarshan, "Self-Localization and Waypoints following of Holonomic Three Wheeled Omni-Directional Mobile Robot," IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), pp. 253-258, 2021, doi: 10.1109/DISCOVER52564.2021.9663644.

M. A. Kawtharani, V. Fakhari, and M. R. Haghjoo, "Tracking Control of an Omni-Directional Mobile Robot," in Human-Computer Interaction, Optimization and Robotic Applications (HORA), pp. 1-8, 2020. doi: 10.1109/HORA49412.2020.9152835.

J. Meng, A. Liu, Y. Yang, Z. Wu, and Q. Xu, "Two-Wheeled Robot Platform Based on PID Control," 2018 5th International Conference on Information Science and Control Engineering (ICISCE), pp. 1011-1014, 2018, doi: 10.1109/ICISCE.2018.00208.

J. Yu, M. Liang, W. Peng, T. Wu, C. Rong, and D. Zhang, "Speed Control Based on an Improved PID Controller with BP Neural Network for Two Wheel Differential AGV System," 2023 IEEE 6th Student Conference on Electric Machines and Systems (SCEMS), pp. 1-5, 2023, doi: 10.1109/SCEMS60579.2023.10379320.

A. El fatimi, A. Addaim, and Z. Guennoun, "Real-time Software In the Loop Simulation for PID Control of the Nanosatellite Reaction Wheel," 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), pp. 1-6, 2022, doi: 10.1109/IRASET52964.2022.9737929.

T. A. Mai, T. S. Dang, D. N. Anisimov, and E. Fedorova, "Fuzzy-PID Controller for Two Wheels Balancing Robot Based on STM32 Microcontroller," 2019 International Conference on Engineering Technologies and Computer Science (EnT), pp. 20-24, 2019, doi: 10.1109/EnT.2019.00009.

T. Nikita and K. T. Prajwal, "PID Controller Based Two Wheeled Self Balancing Robot," 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI), pp. 1-4, 2021, doi: 10.1109/ICOEI51242.2021.9453091.

M. Saad, A. Amhedb, and M. A. Sharqawi, "Real Time DC Motor Position Control Using PID Controller in LabVIEW," Journal of Robotics and Control (JRC), vol. 2, pp. 342-347, 2021, doi: 10.18196/jrc.25104.

V. Rajs, N. L. Rašević, M. Z. Bodić, M. M. Zuković, and K. B. Babković, "PID Controller Design for Motor Speed Regulation with Linear and Non-Linear Load," IFAC-PapersOnLine, vol. 55, no. 4, pp. 225-229, 2022, doi: 10.1016/j.ifacol.2022.06.037.

R. Kristiyono and Wiyono, "Autotuning Fuzzy PID Controller for Speed Control of BLDC Motor," Journal of Robotics and Control (JRC), vol. 2, pp. 400-407, 2021, doi: 10.18196/jrc.2511440.

S. Istiqphara, A. U. Darajat, Fahmizal, and M. F. Ferdous, " Movement Control of Three Omni-Wheels Robot using Pole Placement State Feedback and PID Control," Journal of Fuzzy Systems and Control, vol. 1, no. 2, pp. 44-48, 2023, doi: 10.59247/jfsc.v1i2.36.

M. Soliman, A. T. Azar, M. Abdallah, and H. H. Ammar, "Path Planning Control for 3-Omni Fighting Robot Using PID and Fuzzy Logic Controller," Handbook of Experimental Pharmacology, pp. 442–452, doi: 10.1007/978-3-030-14118-9_45.

M. Hijikata, R. Miyagusuku, and K. Ozaki, "Wheel Arrangement of Four Omni Wheel Mobile Robot for Compactness," Journals Applied Sciences, vol. 12, no. 12, pp. 5798, 2022, doi: 10.3390/app12125798.

R. T. Yunardi, D. Arifianto, F. Bachtiar, and J. I. Prananingrum, "Holonomic Implementation of Three Wheels Omnidirectional Mobile Robot using DC Motors," Journal of Robotics and Control (JRC), vol. 2, no. 2, 2021, doi: 10.18196/jrc.2254

A. Hayatal F, S. Syahrorini, A. Ahfas, and Z. Nur F, "Line Tracer Robot Navigation System Using Arduino Uno Microntroller With PID Control," Academia Open, vol. 8, no. 2, 2023, doi: 10.21070/acopen.8.2023.7275.

D. U. Suwarno, "Simulation on the effects of the Arduino PID controller parameters using the WOKWI online simulator," International Conference on Information Science and Technology Innovation (ICoSTEC), vol. 1, no. 1, pp. 1-5, 2022, doi: 10.35842/icostec.v1i1.1.

D. Permana, M. W. Sari, and R. H. Hardyanto, "System Water Purifier With Arduino Based PID Control," Applied Science And Technology Reaserch Journal, vol. 1, no. 2, pp. 20-25, 2023, doi: 10.31316/astro.v1i2.4642.

S. Nakamori, "Arduino-based PID Control of Humidity in Closed Space by Pulse Width Modulation of AC Voltage," Wseas Transactions On Circuits And Systems, vol. 21, pp. 49-56, doi: 10.37394/23201.2022.21.6.

K. Sozanski, "Low Cost PID Controller for Student Digital Control Laboratory Based on Arduino or STM32 Modules," Electronics, vol. 12, no. 15, 2023, doi: 10.3390/electronics12153235.

A. Kherkhar, Y. Chiba, A. Tlemçani, and H. Mamur, "Thermal investigation of a thermoelectric cooler based on Arduino and PID control approach," Case Studies in Thermal Engineering, vol. 36, no. 1, 2022, doi: 10.1016/j.csite.2022.102249.

R. Rikwan and A. Ma'arif, "DC Motor Rotary Speed Control with Arduino UNO Based PID Control," Control Systems and Optimization Letters, vol. 1, vol. 1, pp. 17-31, 2023, doi: 10.59247/csol.v1i1.6.

R. Shrivastava, "Digital PID Controller based Speed Control of DC Motor," Interantional Journal of Scientific Research in Engineering And Management, vol. 8, no. 5, pp. 1-5, 2024, doi: 10.55041/IJSREM33352.

N. Prasad N and Dr. Kiran V, "I2C Master Scan Chain Insertion and Functional Coverage," International Journal of Research and Review, vol. 9, no. 11, pp. 54-59, 2022, doi: 10.52403/ijrr.20221108.

P. F. Díaz, M. I. U. Fassler, X. Lopez, and B. Casignia, "Design and Calibration of an Arduino-Based I2C Hydraulic Flow Sensor," in XV Multidisciplinary International Congress on Science and Technology, pp. 181-194, 2022, doi: 10.1007/978-3-031-08280-1_13.

E. J. Maevskaya, S. I. Senik, M. V. Negretskul, and D. V. Polishchuk, "Laboratory Stand Smart House On the Basis Arduino Nano Platforms Using the Sequential I2C Data Exchange Protocol," Electrical and Computer Systems, vol. 34, vol. 110, pp. 105-109, 2021, doi: 10.15276/eltecs.34.110.2021.11.

U. Lyu and Z. Lin, "PID Control of Planar Nonlinear Uncertain Systems in the Presence of Actuator Saturation," IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 1, pp. 90-98, 2022, doi: 10.1109/JAS.2021.1004281.

A. A. Argaloka, H. Aptadarya, F. M. Arentaka, and F. Y. Suratman, "A Method of Anti-Windup PID Controller for a BLDC-Drive System," Journal of Measurements Electronics Communications and Systems, vol. 10, no. 2, p. 58, 2023, doi: 10.25124/jmecs.v10i2.7209.

I. Al-Wesabi, F. Zhijian, H. M. H.n Farh, and W. Zhiguo, "Dynamic global power extraction of partially shaded PV system using a hybrid MPSO-PID with anti-windup strategy," Engineering Applications of Artificial Intelligence, vol. 126, p. 106965, 2023, doi: 10.1016/j.engappai.2023.106965.

Z. Y. Hitit, İ. Koçer, G. Kuş, and N. Z. Arslan, "Optimal PID Control with Anti-windup in Neutralization Process," International Advanced Researches and Engineering Journal, vol. 7, no. 3, 2023, doi: 10.35860/iarej.1256107.

M. O. Okelola, D. O. Aborisade, and P. A. Adewuyi, "Performance and Configuration Analysis of Tracking Time Anti-Windup PID Controllers," Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 6, no. 2, pp. 20-29, 2020, doi: 10.26555/jiteki.v6i2.18867.

B. Tomar, N. Kumar, and M. Sreejeth, "Real-Time Balancing and Position Tracking Control of 2-DOF Ball Balancer Using PID with Integral ANTI-WINDUP Controller," Journal of Vibration Engineering & Technologies, vol. 12, no. 1, 2023, doi: 10.1007/s42417-023-01179-x.

D. Peng, B. Huang, and H. Huang, "Design of an Anti-Windup PID Algorithm for Differential Torque Steering Systems," Shock and Vibration, Shock and Vibration, no. 16, pp. 1-14, 2022, doi: 10.1155/2022/9973379.

K. Premkumar, T. Thamizhselvan, M. V. Priya, S. R. Carter, and L. P. Sivakumar, "Fuzzy Anti-Windup PID Controlled Induction Motor," International Journal of Engineering and Advanced Technology, vol. 9, no.1, pp. 184-189, 2019, doi: 10.35940/ijeat.A1113.109119.

A. Rios and O. L.-Santiago, "Robust PID Control with Anti-Windup Compensation for ULDS," in Proceedings of 19th Latin American Control Congress (LACC 2022), pp. 23-33, 2023, doi: 10.1007/978-3-031-26361-3_3.

K. K. C. Yapp, H. C. Lih, and C. H. Lai, "New anti‐windup Proportional‐Integral‐Derivative for motor speed control," Asian Journal of Control, 2024, doi: 10.1002/asjc.3390.

M. Filo, A. Gupta, and M. Khammash, "Anti-Windup Protection Circuits for Biomolecular Integral Controllers," bioRxiv, 2023, doi: 10.1101/2023.10.06.561168.

M. M. Ghazaly, S. P. Tee, and N. Zainal, "Anti-windup modified proportional integral derivative controller for a rotary switched reluctance actuator," Bulletin of Electrical Engineering and Informatics, vol. 12, no. 6, pp. 3311-3324, 2023, doi: 10.11591/eei.v12i6.6027.

L. Magnani, "Heuristic Reasoning,” Studies in Applied Philosophy, Epistemology and Rational Ethics, vol. 16, 2015, doi: 10.1007/978-3-319-09159-4.




DOI: https://doi.org/10.18196/jrc.v5i6.21807

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Supriadi, Agusma Wajiansyah, Mohammad Zainuddin, Arief Bramanto Wicaksono Putra

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik