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Abstract—Rapid growth and technological improvements in
computer vision have enabled indoor camera localization in the
environment. Indoor camera localization is helpful in various
applications, including robotic systems, game playing, and vehicle
navigation. The accurate localization of a camera in a large indoor
environment is challenging. Solving this challenge is necessary
for autonomous robots such as indoor mobile robots. Existing
approaches for solving camera-localization problems have limita-
tions in terms of accuracy and speed. Indoor environments have
many complex problems, motion blur is one of them. Motion
blur introduces significant errors and affects feature matching,
making it difficult to accurately determine camera pose. Object
and camera movements create motion blur. Motion blur degrades
the image quality, complicates the calculation of the indoor camera
pose, and reduces the performance. Therefore, it is imperative
to develop indoor robot navigation systems that require high
accuracy. It is still necessary to improve the camera localization
performance, even though CNN provides improved performance
in positioning applications. In this research study, we propose a
deep architecture to solve the indoor camera localization problem
using a deep architecture trained by minimizing motion blur.
A recurrent deep architecture improves the camera localization
accuracy and speed by 20-30%

Keywords—Camera pose estimation, Indoor camera localization,
Indoor robot navigation, Motion blur, SLAM

I. INTRODUCTION

The position and orientation of the camera with respect
to the world coordinate system are called camera localiza-
tion. The initial step in interpreting the surrounding scene to
determine the camera pose. In structure-from-motion (SfM),
which a camera moves across an environment, it is necessary
to determine the following camera poses at different instants
to reconstruct the surrounding scene. It is essential to define
the relative camera pose or connect one camera to another in
a multicamera system [1]. In robotics and computer vision,

indoor camera localization is a significant problem [2]. Various
methods have been developed for indoor camera localization,
which are crucial for applications [3], such as indoor robot
navigation, SfM, and SLAM. One approach involves point-
based techniques that use image descriptors and 3D scene point
clouds obtained from SfM to establish a camera pose based on
2D-3D matches. However, this method may not be accurate
in some situations, such as when motion blur [4] is present.
To address this problem, researchers have applied machine
learning algorithms [5], [6] such as SCoRF, which generates
camera pose hypotheses based on the predicted 3D locations of
four input image pixels and then refines them using RANSAC.
However, SCoRF requires depth maps to be matched with input
images during training, which must be performed within a
limited time. Researchers used convolutional neural networks
(CNNs) to calculate the camera pose. Most indoor camera
localization algorithms are regression problems, with the CNN
pretrained architecture directly estimating the camera pose.
Despite addressing several issues with point-based systems,
there are still certain limitations to learning-based techniques.
As a result, the training architecture uses a mapping from pixel
to pose [7] that is dependent on the system of coordinates
used by the training data for a certain scene. Multi-scenario
localization complicates the process and prevents the transfer
of geometric knowledge between locations. As pointed out,
the second issue is the apparent limitation of scaling to large
indoor environments, because a limited neural network limits
the physical region it can learn. Developing a comprehensive
indoor positioning system has been a challenging research area
for many years, with precise pose data being essential for
various applications, such as autonomous robot navigation [8].

A significant amount of research has been conducted on in-
door positioning [9]–[11]. For example, when capturing images
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of moving objects or in poor light, motion blur is a typical
problem in indoor camera localization. The accuracy of local-
ization algorithms can be significantly decreased by producing
distortions and ambiguities in the collected images. For camera
localization systems to operate more effectively, motion blur
must be addressed. To achieve precise and trustworthy indoor
camera localization, it is essential to select the appropriate deep
learning architecture. Traditional methods frequently use single-
image algorithms, which may not fully exploit the temporal
information present in the image sequences. It is possible to
improve localization outcomes using temporal data collected
over a number of subsequent frames as helpful cues for motion
estimates and blur removal. We used sophisticated image de-
blurring techniques that successfully restore the sharpness and
clarity of blurred images to remove motion blur. To estimate
the blur kernel and subsequently eliminate blur-induced distor-
tions, these algorithms use motion estimation techniques. We
performed extensive evaluations on various indoor datasets to
assess the performance of the proposed strategy, in contrast
to cutting-edge camera localization techniques. Our findings
demonstrate how the approach can increase localization stability
and accuracy, especially in difficult motion blur circumstances.
In this research study, we eliminate motion blur from a se-
quence of images and introduce an innovative recurrent deep
architecture for indoor camera localization. The recurrent deep
architecture employed a deblurring approach to minimize the
impact of motion blur on the input images as shown in Figure
1.

A recurrent neural network evaluates the input images and
estimates the camera pose. To train the proposed approach, we
used a significant number of indoor images along with ground-
truth camera poses, combining supervised and unsupervised
learning strategies. It uses an LSTM (long short-term memory)
network to identify temporal correlations in the input sequence.
Our contributions summarize as below:

1) We propose a innovative technique for eliminating motion
blur in indoor camera localization. We can significantly
minimize the effect of motion blur on the precision of
camera localization by evaluating the blur patterns and
utilizing cutting-edge image processing techniques.

2) We presented a recurrent deep architecture specifically
designed for evaluating image sequences in the context
of camera localization. To increase the precision and
stability of the camera pose estimation, our model takes
advantage of the temporal data recorded in the succeeding
frames.

3) We integrated a unified indoor camera localization system
with a motion blur removal technique and a recurrent
deep architecture. The experimental results reveal the ef-
ficiency of the proposed method, displaying considerable
gains in robustness and localization accuracy.

The research study has applications in robotics, augmented
reality, and indoor navigation systems, among other fields that

rely on indoor camera localization. Although the recurrent
deep architecture improves the overall performance of camera
localization systems, enabling more accurate and reliable lo-
calization in real-world applications, the motion blur removal
technique can assist in overcoming obstacles associated with
dynamic environments and moving cameras. The proposed
approach represents a substantial development in the field
of indoor camera localization by addressing the problems of
motion blur and utilizing a recurrent deep architecture. Com-
bining these contributions strengthens the dependability and
accuracy of camera localization systems, creating opportunities
for further developments in associated research and real-world
applications.

II. RELATED WORKS

This section describes the literature review of motion blur,
indoor camera localization, and recurrent neural network.

A. Motion Blur

In the past decade, blurred images have received consider-
able attention for camera localization in indoor environments.
Researchers have addressed blur caused by camera movements
and plane translations. They successfully removed blurs when
the motion assumptions were followed. A novel approach
[12] addressed the challenge of evaluating and improving a
blurry image through removing motion blur. To calculate the
probability distribution of motion blur, researchers have adopted
a CNN-based deep-learning approach. Image deblurring aims
to restore sharpness to a blurry image caused by camera shake
or object motion [6]. The researchers focused on measuring
and minimizing non-uniform motion blur [13]. To provide
a unique deep learning-based strategy for predicting motion
blur accompanied by a patch survey data deblurring approach
tailored to motion blur. Using CNNs’ powerful feature learning
capabilities of CNNs, they can accurately predict complex
motion blur [14]. Motion blur is pervasive in indoor camera
localization, particularly when using small, transportable de-
vices, such as cellphones and hidden cameras. Considering a
few constraints on a particular type of blur, many strategies [15]
have recently been developed to minimize the blur caused by
camera object movements. Motion blur [16] in actual images
can be caused by multiple factors involving the camera [17]
and object movement, resulting in complicated blur patterns.
Uniform deblurring approaches cannot eliminate non-uniform
blur [18]. Some end-to-end approaches have been proposed for
reconstructing blur-free images [19]. However, they can tolerate
only minor Gaussian blur. Recently published a feed-forward
neural network-based deblurring approach [17] that employs
information from image sequences with minor errors. A patch-
based system [20] proposed to expect frequency information
uniform motion blur reduction. The most significant research
[21] focused on employing an update-level blurred-type classi-
fication approach based on a CNN to predict movement flow
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Fig. 1. Overview of an improved indoor camera localization through motion blur elimination and recurrent neural network.

from a single blurry image. An efficient and flexible deep-
learning-based technique [22] have been proposed to predict
and reduce heterogeneous motion blur. Motion blur is one
of the most noticeable flaws in images taken with handheld
cameras [23]. Camera shaking caused by extended exposure
times in low-light circumstances and quick object movements
in a dynamic image causes the blur artefact. An internetwork
was created by converting the classic coarse-to-fine technique
to a CNN [24], using a recurrent neural network (RNN) with a
nonlinear architecture, dramatically improving its performance.
DeblurGAN [25], which is a deep deblurring network, is
influenced by research on Generative Adversarial Nets (GAN).
Researchers added a dark channel to the loss function to reduce
pattern artifacts, and lightweight U-nets [26] were used to
replace the residual net DeblurGAN. A framework proposed for
recovering from a combination of noisy and unclear images,
a sharp and clear image [27]. A novel recurrent network
[28] designs that operate on arbitrary duration films. In [27],
proposed an adaptive temporal blending component on a fast
RNN, whereas Wieschollek et al. [28] used information from
the previous frame by simply copying features. Researchers
have used an iterative hidden layer update approach inside
a single inter-frame time step to ensure that the transmit-
ted hidden state fits the target frame. As a result, effective
motion deblurring [29] techniques enhance the dependability
of associated industries, such as aerospace, traffic monitoring,
army search, satellite, and space imagery. In some of the most
recent algorithms, deep learning [30] predicts the probability
dispersion of motion blur and restores the damaged images
[31]. Divided these deep-learning methods into two groups.
The first method uses multi-frame images containing a complex
network foundation, and the second uses only a single image
[32] to deblur the degraded image. Deep-learning algorithms
are not ideal for single-image deblurring [33] because they
require a long time to compute complicated building structures
or have particular criteria for blur conditions. Non-uniform
single-image deblurring or predicting unknown non-uniform
blur kernels remains a problematic ill-posed inverse issue for
recovering a clear image using a blurred image [34]. The optical

flow describes the displacement of nearby frames [35] to assist
in learning future neural network models.

B. Indoor Camera Localization

The indoor camera localization measures the camera poses
of the query image in a random scene. In indoor camera
localization, a single image or image sequence is the input
and the predicted camera poses are the outputs [36]. The
localization of indoor cameras comprises an approach based
on scene representation. The camera localization [37] problem
was first implemented as a localization detection problem [38].
The image was located using an image retrieval system. When
matches between a queried image and an image in the database,
the image closest to the query is found. Convolutional neural
networks have been utilized in deep learning-driven camera
pose estimation to determine how to transform RGB images
into related poses. PoseNet [39] was the first to employ CNNs
to predict straight 6-DOF camera pose estimation [71]. Motion
blur is the leading cause of performance degradation. Although
some images contain texture surfaces that are free from motion
blur, many missing ground-truth scene coordinate labels might
cause issues. In Bayesian-PoseNet [40] researchers introduced
PoseNet to account for the uncertainty in pose estimation.
Localization fails because of constraints, such as motion blur
and illumination changes. The localization performance is
improved by the LSTM-PoseNet architecture, which reduces
the structured dimensionality and addresses challenges such
as motion blur and illumination changes. In [41], proposed
an hourglass architecture as the basis for pose regression.
This study demonstrates that the method works on data with
motion blur and lighting change problems. Camera localization
is restricted [42] employing conditional generative adversarial
networks and the regression model to achieve pose estimation.
Some other research has focused on frameworks to increase
the performance of camera localization [43]. In [44], proposed
a lightweight CNN for real-time camera localization. Several
approaches have been proposed to predict poses using computer
vision. In [45], suggest a method that focuses on important
geometric features [69] through multitasking, which uses in-
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formation from related activities. In [46], present a technique
based on ConvNet that dynamically predict the reat-time camera
pose estimation. In [47], use CNN-RNN networks with image
sequences to enforce temporal smoothness in camera motion.
Another approach developed [48] a viewgraph using graph
neural networks, which enables the sharing of information from
non-consecutive frames [49]. Various studies have employed
this approach, such as Peng and Saenko [50], who utilized deep
correlation alignment networks to recognize 3D CAD modelsIn
[51], proposed a combined dataset of both natural and artificial
images for object recognition; and in [52], mapped synthetic
to real images in benchmark representations to bridge the gap
between synthetic and real images in pattern representations.
Additionally, some researchers, such as [53], [70], have syn-
thesized images using 3D models to evaluate search images
against a database of synthetic images using in-depth features,
specifically for the geolocation image dataset. Inspired by this
research, in [54], proposed using syntactic and actual image
sequences as a training dataset and the PoseNet [39] network
to directly predict the camera pose. In [55], used a recurrent
neural network, domain adaptation and addressed the enormous
visual and domain-specific differences between artificial and
real images, which significantly degrade localization accuracy
[56]. Indoor camera location based on deep learning remains
challenging because indoor scenes have motion blur. Deep
learning-based approaches overcome the limitation of local
feature-based methods but are still far from an actual value.
Some indoor positioning applications such as mobile guide
robots [72] and indoor robot navigation require more accurate
camera positioning. Therefore, there is a need to improve the
location of RNN-based indoor cameras.

C. Recurrent Neural Network

The ability of RNNs (Recurrent Neural Networks) to handle
sequential data has led to their widespread application in camera
localization tasks. For camera localization, three common RNN
architecture options include LSTM (Long Short-Term Mem-
ory, Bi-directional Long Short-Term Memory (Bi-LSTM), and
Gated Recurrent Unit (GRU). LSTM models have been used
successfully to determine the exact location inside cameras
by taking advantage of their capacity to collect long-range
dependencies and handle sequential inputs [57]. These models
are able to anticipate the camera’s position with accuracy
because they make use of the temporal information included in
the camera data. Bidirectional Long Short-Term Memory (Bi-
LSTM) networks have been used to great success in a number
of computer vision tasks, including indoor camera localization.
Bi-LSTM models can successfully learn and predict the position
of a camera inside an indoor environment by capturing the
temporal interdependence and spatial context in sequential
data [58]. GRUs have demonstrated potential for modeling
sequential data and identifying temporal dependencies, which
makes them suitable for evaluating video feeds from indoor

cameras. Researchers have used GRUs to achieve precise and
reliable localization results, thereby enabling accurate tracking
and surveillance in indoor situations.

III. MATERIAL AND METHODS

A novel recurrent deep architecture that minimizes motion
blur for indoor camera localization is completely experimental
research. We collected data from secondary sources to identify
the image features, recognition techniques, recurrent neural
network techniques, and optimization techniques. Primary data
were gathered from publicly available databases. In addition,
we analyzed the image database using a deep-learning system.
We developed a recurrent neural network model to estimate and
evaluate the camera pose.

A. Recurrent Deep Model

First, we started by using blurry images as input for a camera
pose model. Then, employed a Convolutional Neural Network
(CNN) to extract features from these blurry images. After
that, we used Recurrent Neural Networks (RNNs) to reduce
the blurriness and generate clear and accurate images without
any errors. To identify motion blur in an image analyzed its
frequency spectrum. A presence of low-frequency components
indicates motion blur, and we can determine the extent and
direction of the blur by examining the orientation of these low-
frequency contents. Once we identify the motion blur, we need
to determine the blur kernel using a blind deconvolution. Then,
we can apply a deblurring technique, such as total variation
deconvolution, to remove the blur and obtain a clear copy of the
original image. Additionally, we can enhance the image quality
further by using denoising techniques and improving overall
image quality. Even after deblurring, there might still be some
noise present in the image. We can evaluate the performance of
the motion blur reduction algorithm by comparing the original
and deblurred images or by using the peak signal-to-noise ratio
(PSNR). Through a comprehensive analysis, we can determine
whether the algorithm successfully reduces motion blur. We
calculated the camera pose using a recurrent neural network
(RNN), and the optimization process helps improve the results.

Figure 2 illustrates the entire procedure of camera local-
ization, while Figure 3 demonstrates the complete deblurring
process. Recurrent neural networks retain information from the
previous state in a single hidden layer, allowing them to im-
prove the removal of motion blur. By discarding less important
information and incorporating new data from the input, the
hidden state at each time step provides relevant information
with long-term connections. We proposed a modified RNN
with an added recurrent unit for these operations. Equation 1
performs the blur removal operation.

h̃t = RU(h̃t−1, h̃t) (1)

As a series of higher-order memory states, the output of
recurring unit (RU), h̃t is created by examining the variations of
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Fig. 2. Camera pose estimation from deblurred images

ht. The recurring unit (RU) does not require additional memory
to hold the information in a long connection. In this recurrent
architecture h̃t is perform the blur removal performance.

B. Experimental Setup

The network is trained uniformly on different datasets, such
as 7-Scenes [39], by resizing the images to 256 pixels. Subse-
quently, the input images were adjusted to have intensity values
between −1 and 1. The ResNet34 component of the network
was pretrained on the ImageNet dataset, whereas the other
elements were randomly initialized. Throughout the training
and testing phases, we shrank 256 × 256 pixel images for
the network by applying an arbitrary and centralized cropping
mechanism. The augmentation phase was necessary to increase
the generalization capabilities of the architecture under various
meteorological scenarios and the duration of the scenarios.
Our methods are in Python 3.10 using PyTorch [64]and Adam
solvers with a learning rate of 5×10−5. On a GPU, we trained
the network with a few hyperparameters, such as epoch is
20, batch size is 64, train dropout is 0.5, test dropout is 0.0,
validation frequency is 5, weight decay is 0.0005, learning rate
is 5e−05, weight initialization β is 0.9, and γ is 0.3.

C. Datasets

The availability of public databases for localization activities
has recently increased, with a focus on utilizing deep learning
approaches for image processing. Currently, only a few public
databases exist, such as Microsoft Researchers 7-Scenes [59],
TUM LSI [57], and InLoc [60]. To assess advanced indoor
camera localization algorithms, it is crucial to have large-scale
multidimensional datasets that incorporate diverse collection
platforms, environments, and images. The Microsoft 7-Scenes

dataset developed by Microsoft Research was utilized in this
study. It contains seven indoor environments and is a widely
used RGB-D dataset. The images were captured using a hand-
held Kinect camera with a resolution of 640× 480 pixels, and
the ground-truth camera positions were obtained through Kinect
fusion. Each scene was accompanied by a detailed 3D model,
and there were multiple sequences of tracked RGB-D camera
frames split into training and testing data. However, this dataset
presents significant challenges, owing to factors such as motion
blur, textureless surfaces, and repetitive structures [61]. Figure
4 shows the input, ground truth and predicted image.

D. Model Evolution Metrics

Error calculation techniques were applied to evaluate the
effectiveness of the recurrent neural network model Mean
Absolute Error (MAE), Mean Square Error (MSE), and Root
Mean Square Error (RMSE) are most of them.

E. Experimental Results

1) Accuracy: The recurrent deep architecture was validated
by comparing its performance with those of other existing ap-
proaches. Evaluate the 7-Scenes dataset [59], we used PoseNet
[39], LSTM-PoseNet [57], MapNet [62], AtLoc [63], Epi-
Locb66, and CGAPoseNetb67. The expected result shows better
performance than the existing approaches. Compared with the
previous baseline, the precision of the position increased by
20%, and the rotation increased by 25%. Our study decreases
the positional error from 0.18 m to 0.16 m and the rotational er-
ror from 6.68◦ to 5.31◦, improving previous research as shown
in table 1. Our deep architecture obtained higher accuracy using
recurrent neural networks and motion blur eliination than the
edge-cutting architectures.
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Fig. 3. Image deblurring process

TABLE I
AVERAGE POSE ERRORS OF EXISTING ALGORITHMS AND OUR PROPOSED ARCHITECTURE

Network and Ref. Chess Fire Head Office Pumpkin RedKitchen Stairs Avg. Pose Error

PoseNet [39] 0.32m,4.06◦ 0.47m,7.33◦ 0.29m, 12.00◦ 0.48m, 6.00◦ 0.47m, 4.21◦ 0.59m, 4.32◦ 0.47m, 06.93◦ 0.45m, 9.84◦

LSTM-PoseNet [57] 0.24m, 5.77◦ 0.34m, 11.90◦ 0.21m, 13.70◦ 0.31m, 8.07◦ 0.33m, 7.00◦ 0.37m, 8.82◦ 0.41m, 13.70◦ 0.31m, 9.85◦

MapNet [62] 0.08m, 3.25◦ 0.27m, 1169◦ 0.18m, 13.25◦ 0.17m, 5.15◦ 0.22m, 4.02◦ 0.23m, 4.93◦ 0.30m, 12.08◦ 0.21m, 7.78◦

AtLoc [63] 0.10m, 4.07◦ 0.25m, 11.40◦ 0.16m, 11.80◦ 0.17m, 5.34◦ 0.21m, 4.37◦ 0.23m, 5.42◦ 0.26m, 10.50◦ 0.20m, 7.56◦

EpiLoc [66] 0.07m, 2.71◦ 0.24m, 9.18◦ 0.14m, 12.6◦ 0.18m, 4.45◦ 0.18m, 3.32◦ 0.23m, 4.60◦ 0.24m, 11.00◦ 0.18m, 6.82◦

CGAPoseNet [67] 0.26m, 6.34◦ 0.28m, 10.03◦ 0.17m, 7.98◦ 0.26m, 7.23◦ 0.22m, 5.18◦ 0.55m, 16.7◦ 0.17m, 12.00◦ 0.27m, 9.39◦

Proposed 0.14m, 3.76◦ 0.18m,10.15◦ 0.15m,9.75◦ 0.14m, 5.33◦ 0.15m,3.01◦ 0.17m, 3.04◦ 0.19m,4.13◦ 0.16m, 5.31◦

Fig. 4. Input images, ground truth images, and predicted images of 7-scenes
dataset.

Figure 5 illustrates a plot depicting the train loss and test loss
for the motion blur elimination model. The x-axis represents
the number of epochs, while the y-axis displays the train and
test loss. The plot reveals a pattern where the error is initially
high but gradually decreases as the number of epochs increases.

Fig. 5. Training and testing loss for proposed model

Eventually, the error reaches a minimum level, indicating
regularization. Initially, the accuracy is low, but over time, it
progressively improves and eventually stabilizes at a consistent
level. Our proposed architecture achieves the best localization
performance compared to existing methods, as illustrated in
Table 2.

2) Speed: We examined the average running times of
PoseNet [39], MapNet [57], LSTM-PoseNet [62], AtLoc [63],
and our proposed recurrent deep model. MapNet takes the slow-
est to operate, at 9.4 ms for each frame, because it must interpret
additional data from a good deal of sensory information and
a sequence of images to apply geometric restrictions. LSTM-

Alam et al., Optimizing Indoor Camera Localization: An Efficient Approach Integrating Recurrent Neural Networks and
Motion Blur Elimination



Journal of Robotics and Control (JRC) ISSN: 2715-5072 7

Fig. 6. Training and testing accuracy for proposed model

PoseNet has a running time of 9.2 ms per frame, which is
3.7 ms quicker than PoseNet, because of the time-consuming
recursive procedures in LSTMs. AtLoc uses 6.3 milliseconds of
each frame to achieve computational efficiency and localization
accuracy. Our recurrent deep architecture running time is 6.0
ms.

TABLE II
RUNNING TIME COMPARISON OF EXISTING RESEARCHES AND OUR

PROPOSED ARCHITECTURE.

Network References Running Time/Frame
PoseNet [39] 12.9 ms

LSTM-PoseNet [57] 9.4 ms
MapNet [62] 9.2 ms
AtLoc [63] 6.3 ms

Proposed - 6.0 ms

3) Metric Evaluation: We evaluated the recurrent deep ar-
chitecture using 7-Scene datasets [39], [65] using the MAE,
MSE, and RMSE. The evaluation results for the three distinct
metrics are presented in Table 3. MSE generated the lowest
error value compared to the other two methods. Figure 6
demonstrate the training loss ands the validation loss of the
GRU and Figure 6 shows the training and testing accuracy for
the proposed architecture. We applied the test set after each
epoch of the architecture learned during training, and evaluated
the test data after each epoch. The goodness-of-fit analysis of
the three architectures shows that their overall performance is
fairly similar. However, compared with LSTM and Bi-LSTM,
the GRU architecture is more accurate. Therefore, we deployed
the GRU architecture to train the deep architecture.

IV. DISCUSSION

In recent advancements, image-based indoor-camera local-
ization still faces several challenges. Achieving high local-
ization accuracy requires accounting for training costs and
offline training, making online implementation difficult and
impractical. While 3D structure-based localization approaches

TABLE III
EVALUATION METRIC FOR DIFFERENT RECURRENT NEURAL NETWORKS.

Error Error for different RNN architecture
LSTM Bi-LSTM GRU

MAE 0.2135 0.1964 0.1617
MSE 0.0841 0.0730 0.0699

RMSE 0.2876 0.2766 0.2644

can achieve excellent indoor performance, they struggle to adapt
to changing environments, repeated elements, textures with low
surface area, illumination variations, motion blur, and limited
viewpoint adjustments, which significantly affects localization
results. The need for motion deburring to reduce motion blur in
the input images is one of the limitations of this architecture.
Although the architecture works well with regulated motion
blur in synthetic data, it may not adapt well to real-world situ-
ations with unexpected motion blur. The proposed architecture
additionally requires an extensive collection of indoor scenes
with real camera poses for training. Such a dataset can be
challenging to gather, which may restrict the application of the
architecture in certain circumstances. Finally, changes in the
environment, including changes in lighting or scene complexity,
may affect architecture performance. The architecture may find
it challenging to predict camera poses effectively because of
these modifications, which could restrict its applicability in
certain situations.

V. CONCLUSION

Image-based indoor camera localization is a complex and
vital issue. This research provides an indoor camera localiza-
tion deep architecture using a recurrent neural network. Our
approach allows the architecture to learn geometrically robust
features and reduce motion blur issues. Using the selected
datasets, we showed that our method outperforms state-of-the-
art techniques. Because of the large variety of scene appear-
ances and movements, our research provides a new approach to
camera localization by minimizing motion blur. The proposed
recurrent deep architecture can help learn robust geometrical
features and reduce the effects of shifting motion blurs. We
have shown state-of-the-art results in demand settings. In the
future, we will refine the recurrent deep architecture further and
test it to see whether it can enhance multi-sensor camera pose
regression.

VI. FUTURE WORK

The utilization of various sensors, such as LiDAR, Wi-Fi,
IMU, and Bluetooth, can provide detailed indoor localization
information, but the challenge lies in handling the diverse
features of each sensor to achieve precise positioning. To
address this challenge, a more powerful and accurate local-
ization system can be developed by effectively combining
the data from multiple sensors. The semantics of features in
real-world scenes plays a crucial role in achieving accurate
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positioning outcomes by simplifying the exclusion of dynamic
object attributes. Thus, semantic architecture can be useful for
indoor positioning systems in the future. In addition, a multi-
camera setup can enhance robotic applications by providing a
360-degree panoramic field of view. To expedite the feature
calculation time, a potential direction for future research is to
develop a recurrent neural network system to assess features
from numerous cameras end-to-end. The proposed architecture
uses a series of images and requires considerable computing
time. Future research could investigate making the architecture
more efficient for real-time use on low-power gadgets, such as
cell phones or embedded systems. This would allow for a more
extensive range of architecture applications.

ACKNOWLEDGMENT

The authors wish to thank to Faculty of Computing, Univer-
siti Teknologi Malaysia, Johor Bahru, Malaysia.

REFERENCES

[1] M. Sewtz, X. Luo, J. Landgraf, T. Bodenmüller, and R. Triebel, “Robust
approaches for localization on multi-camera systems in dynamic environ-
ments,” in 2021 7th International Conference on Automation, Robotics
and Applications (ICARA), IEEE, 2021, pp. 211–215.

[2] M. S. Alam, F. B. Mohamed, A. Selamat, and A. B. Hossain, “A Review
of Recurrent Neural Network Based Camera Localization for Indoor
Environments,” IEEE Access, vol. 11, 2023.

[3] R. Brylka, U. Schwanecke, B. Bierwirth, “Camera based barcode local-
ization and decoding in real-world applications,” in 2020 International
Conference on Omnilayer Intelligent Systems (COINS), 2020, pp. 1–8,
IEEE.

[4] R. Brylka, U. Schwanecke, and B. Bierwirth, “Camera based barcode lo-
calization and decoding in real-world applications,” in 2020 International
Conference on Omni-layer Intelligent Systems (COINS), IEEE, 2020, pp.
1–8. [

[5] E. Brachmann et al., “Dsac-differentiable ransac for camera localization,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 6684–6692.

[6] H. Yao, R. W. Stidham, Z. Gao, J. Gryak, and K. Najarian, “Motion-based
camera localization system in colonoscopy videos,” Med Image Anal, vol.
73, p. 102180, 2021.

[7] P.-E. Sarlin, A. Unagar, M. Larsson, H. Germain, C. Toft, V. Larsson,
M. Pollefeys, V. Lepetit, L. Hammarstrand, F. Kahl, et al., “Back to
the feature: Learning robust camera localization from pixels to pose,” in
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2021, pp. 3247–3257.

[8] I. Arrouch, N. S. Ahmad, P. Goh, J. MohamadSaleh, “Close proximity
time-to-collision prediction for autonomous robot navigation: An expo-
nential gpr approach,” Alexandria Engineering Journal, vol. 61, no. 12,
pp. 11171–11183, 2022.

[9] A. Raza, L. Lolic, S. Akhter, and M. Liut, “Comparing and evaluating
indoor positioning techniques,” in 2021 International Conference on
Indoor Positioning and Indoor Navigation (IPIN), IEEE, 2021, pp. 1–8.

[10] J. Zhang, H. Mao, “Wknn indoor positioning method based on spatial
feature partition and basketball motion capture,” Alexandria engineering
journal, vol. 61, no. 1, pp. 125–134, 2022.

[11] C. E. A. Bundak, M. A. Abd Rahman, M. K. A. Karim, N. H. Osman,
“Fuzzy rank cluster top k euclidean distance and triangle based algorithm
for magnetic field indoor positioning system,” Alexandria Engineering
Journal, vol. 61, no. 5, pp. 3645–3655, 2022.

[12] S. Su, M. Delbracio, J. Wang, G. Sapiro, W. Heidrich, and O. Wang,
“Deep video deblurring for hand-held cameras,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
1279–1288.

[13] J. Sun, W. Cao, Z. Xu, and J. Ponce, “Learning a convolutional neural
network for non-uniform motion blur removal,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015, pp.
769–777.

[14] D. Rozumnyi, M. R. Oswald, V. Ferrari, M. Pollefeys, “Motion-from-blur:
3d shape and motion estimation of motion-blurred objects in videos,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 15990–15999.

[15] J. Pan, D. Sun, H. Pfister, and M.-H. Yang, “Blind image deblurring using
dark channel prior,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 1628–1636.

[16] J. F. Schmid, S. F. Simon, R. Radhakrishnan, S. Frintrop, and R. Mester,
“HD Ground-A Database for Ground Texture Based Localization,” in
2022 International Conference on Robotics and Automation (ICRA),
IEEE, 2022, pp. 7628–7634.

[17] P. Wieschollek, B. Schölkopf, H. Lensch, and M. Hirsch, “End-to-end
learning for image burst deblurring,” in asian conference on computer
vision, Springer, 2016, pp. 35–51.

[18] W. Yang, X. Zhang, H. Ma, G. Zhang, “Laser beamsbased localization
methods for boom-type roadheader using underground camera non-
uniform blur model,” IEEE Access, vol. 8, pp. 190327–190341, 2020.

[19] X. Mao, C. Shen, and Y.-B. Yang, “Image restoration using very deep con-
volutional encoder-decoder networks with symmetric skip connections,”
Adv Neural Inf Process Syst, vol. 29, 2016.

[20] A. Chakrabarti, “A neural approach to blind motion deblurring,” in
European conference on computer vision, Springer, 2016, pp. 221–235.

[21] L. Sun, S. Cho, J. Wang, and J. Hays, “Edge-based blur kernel estimation
using patch priors,” in IEEE international conference on computational
photography (ICCP), IEEE, 2013, pp. 1–8.

[22] D. Gong et al., “From motion blur to motion flow: A deep learning
solution for removing heterogeneous motion blur,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
2319–2328.

[23] F. Pirahansiah, S. Sahran, S. N. H. S. Abdullah, “Camera calibration and
video stabilization framework for robot localization,” Control Engineering
in Robotics and Industrial Automation: Malaysian Society for Automatic
Control Engineers (MACE) Technical Series 2018, pp. 267–287, 2022.

[24] X. Tao, H. Gao, X. Shen, J. Wang, and J. Jia, “Scale-recurrent network
for deep image deblurring,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 8174–8182.

[25] O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, and J. Matas, “De-
blurgan: Blind motion deblurring using conditional adversarial networks,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 8183–8192.

[26] S. Zhang, A. Zhen, R. L. Stevenson, “Deep motion blur removal using
noisy/blurry image pairs,” Journal of Electronic Imaging, vol. 30, no. 3,
pp. 033022–033022, 2021.

[27] T. H. Kim, S. Nah, K. M. Lee, “Dynamic video deblurring using a locally
adaptive blur model,” IEEE transactions on pattern analysis and machine
intelligence, vol. 40, no. 10, pp. 2374–2387, 2017.

[28] P. Wieschollek, M. Hirsch, B. Scholkopf, H. Lensch, “Learning blind
motion deblurring,” in Proceedings of the IEEE international conference
on computer vision, 2017, pp. 231–240.

[29] M. D. Kim, J. Ueda, “Real-time image de-blurring and image processing
for a robotic vision system,” in 2015 IEEE International Conference on
Robotics and Automation (ICRA), 2015, pp. 1899–1904, IEEE.

[30] M. Tian, Q. Nie, H. Shen, “3d scene geometry-aware constraint for camera
localization with deep learning,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA), 2020, pp. 4211–4217, IEEE.

[31] J. Gast, A. Sellent, S. Roth, “Parametric object motion from blur,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 1846– 1854.

[32] K. Purohit, S. Vasu, M. P. Rao, A. Rajagopalan, “Multiplanar geometry
and latent image recovery from a single motion-blurred image,” Machine
Vision and Applications, vol. 33, no. 1, p. 10, 2022.

[33] S. Klenk, L. Koestler, D. Scaramuzza, D. Cremers, “E-nerf: Neural radi-
ance fields from a moving event camera,” IEEE Robotics and Automation
Letters, 2023.

[34] D. Park, D. U. Kang, J. Kim, S. Y. Chun, “Multitemporal recurrent
neural networks for progressive non-uniform single image deblurring with

Alam et al., Optimizing Indoor Camera Localization: An Efficient Approach Integrating Recurrent Neural Networks and
Motion Blur Elimination



Journal of Robotics and Control (JRC) ISSN: 2715-5072 9

incremental temporal training,” in Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23– 28, 2020, Proceedings,
Part VI 16, 2020, pp. 327–343, Springer.

[35] J. Pan, H. Bai, J. Tang, “Cascaded deep video deblurring using temporal
sharpness prior,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2020, pp. 3043–3051.

[36] T. Xie, K. Dai, K. Wang, R. Li, J. Wang, X. Tang, L. Zhao, “A deep
feature aggregation network for accurate indoor camera localization,”
IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 3687–3694,
2022.

[37] J. Yu, F. Gao, J. Cao, C. Yu, Z. Zhang, Z. Huang, Y. Wang, H. Yang, “Cnn-
based monocular decentralized slam on embedded fpga,” in 2020 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2020, pp. 66–73, IEEE.

[38] W. Zhang, J. Kosecka, “Image based localization in urban environments,”
in Third international symposium on 3D data processing, visualization,
and transmission (3DPVT’06), 2006, pp. 33–40, IEEE.

[39] A. Kendall, M. Grimes, R. Cipolla, “Posenet: A convolutional network
for real-time 6-dof camera relocalization,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 2938–2946.

[40] A. Kendall, R. Cipolla, “Modelling uncertainty in deep learning for
camera relocalization,” in 2016 IEEE international conference on Robotics
and Automation (ICRA), 2016, pp. 4762–4769, IEEE.

[41] I. Melekhov, J. Ylioinas, J. Kannala, E. Rahtu, “Imagebased localization
using hourglass networks,” in Proceedings of the IEEE international
conference on computer vision workshops, 2017, pp. 879–886.

[42] K. Liu, Q. Li, G. Qiu, “Posegan: A pose-to-image translation framework
for camera localization,” ISPRS Journal of Photogrammetry and Remote
Sensing, vol. 166, pp. 308–315, 2020.

[43] F. Ott, T. Feigl, C. Loffler, C. Mutschler, “Vipr: visualodometry-aided pose
regression for 6dof camera localization,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops,
2020, pp. 42–43.

[44] M. Müller, S. Urban, B. Jutzi, “Squeezeposenet: Image based pose
regression with small convolutional neural networks for real time uas
navigation,” ISPRS Annals of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, vol. 4, p. 49, 2017.

[45] C. Wang, B. Luo, Y. Zhang, Q. Zhao, L. Yin, W. Wang, X. Su, Y. Wang,
C. Li, “Dymslam: 4d dynamic scene reconstruction based on geometrical
motion segmentation,” IEEE Robotics and Automation Letters, vol. 6, no.
2, pp. 550–557, 2020. 10

[46] M. Li, J. Qin, D. Li, R. Chen, X. Liao, B. Guo, “Vnlstmposenet: A novel
deep convnet for real-time 6-dof camera relocalization in urban streets,”
Geo-Spatial Information Science, vol. 24, no. 3, pp. 422–437, 2021.

[47] R. Clark, S. Wang, A. Markham, N. Trigoni, H. Wen, “Vidloc: A deep
spatio-temporal model for 6-dof video-clip relocalization,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 6856–6864.

[48] F. Xue, X. Wu, S. Cai, J. Wang, “Learning multi-view camera relocaliza-
tion with graph neural networks,” in 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2020, pp. 11372–11381,
IEEE.

[49] X. Huang, M. Halwani, R. Muthusamy, A. Ayyad, D. Swart, L. Senevi-
ratne, D. Gan, Y. Zweiri, “Realtime grasping strategies using event
camera,” Journal of Intelligent Manufacturing, vol. 33, no. 2, pp. 593–615,
2022.

[50] X. Peng, K. Saenko, “Synthetic to real adaptation with generative
correlation alignment networks,” in 2018 IEEE Winter Conference on
Applications of Computer Vision (WACV), 2018, pp. 1982–1991, IEEE.

[51] E. Bayraktar, C. B. Yigit, P. Boyraz, “A hybrid image dataset toward
bridging the gap between real and simulation environments for robotics:
Annotated desktop objects real and synthetic images dataset: Adoreset,”
Machine Vision and Applications, vol. 30, no. 1, pp. 23–40, 2019.

[52] M. Rad, M. Oberweger, V. Lepetit, “Feature mapping for learning fast
and accurate 3d pose inference from synthetic images,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2018,
pp. 4663–4672.

[53] I. Ha, H. Kim, S. Park, H. Kim, “Image retrieval using bim and features
from pretrained vgg network for indoor localization,” Building and
Environment, vol. 140, pp. 23–31, 2018.

[54] D. Acharya, K. Khoshelham, S. Winter, “Bim-posenet: Indoor camera
localisation using a 3d indoor model and deep learning from synthetic
images,” ISPRS journal of photogrammetry and remote sensing, vol. 150,
pp. 245–258, 2019.

[55] D. Acharya, S. Singha Roy, K. Khoshelham, S. Winter, “A recurrent deep
network for estimating the pose of real indoor images from synthetic
image sequences,” Sensors, vol. 20, no. 19, p. 5492, 2020.

[56] N. Li, H. Ai, “Efiloc: large-scale visual indoor localization with efficient
correlation between sparse features and 3d points,” The Visual Computer,
pp. 1–16, 2022.

[57] F. Walch, C. Hazirbas, L. Leal-Taixe, T. Sattler, S. Hilsenbeck, D.
Cremers, “Image-based localization using lstms for structured feature
correlation,” in Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 627–637.

[58] M. S. Alam, A. K. M. B. Hossain, and F. B. Mohamed, “Performance
Evaluation of Recurrent Neural Networks Applied to Indoor Camera Lo-
calization,” International Journal of Emerging Technology and Advanced
Engineering, vol. 12, no. 8, 2022

[59] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, A. Fitzgibbon,
“Scene coordinate regression forests for camera relocalization in rgb-d
images,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2013, pp. 2930–2937.

[60] ] H. Taira, M. Okutomi, T. Sattler, M. Cimpoi, M. Pollefeys, J. Sivic, T.
Pajdla, A. Torii, “Inloc: Indoor visual localization with dense matching
and view synthesis,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 7199–7209.

[61] N. Radwan, A. Valada, W. Burgard, “Vlocnet++: Deep multitask learning
for semantic visual localization and odometry,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 4407–4414, 2018.

[62] S. Brahmbhatt, J. Gu, K. Kim, J. Hays, J. Kautz, “Geometry-aware
learning of maps for camera localization,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 2616–
2625.

[63] B. Wang, C. Chen, C. X. Lu, P. Zhao, N. Trigoni, A. Markham, “Atloc:
Attention guided camera localization,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, 2020, pp. 10393–10401.

[64] S. Imambi, K. B. Prakash, and G. R. Kanagachidambaresan, “PyTorch,”
Programming with TensorFlow: Solution for Edge Computing Applica-
tions, pp. 87–104, 2021.

[65] B. Glocker, S. Izadi, J. Shotton, and A. Criminisi, “Real-time RGB-D
camera relocalization,” in 2013 IEEE International Symposium on Mixed
and Augmented Reality (ISMAR), IEEE, 2013, pp. 173–179.

[66] L. Xu, T. Guan, Y. Luo, Y. Wang, Z. Chen, and W. Liu, “EpiLoc: Deep
Camera Localization Under Epipolar Constraint.,” KSII Transactions on
Internet & Information Systems, vol. 16, no. 6, 2022.

[67] A. Pepe and J. Lasenby, “Cga-posenet: Camera pose regression via
a 1d-up approach to conformal geometric algebra,” arXiv preprint
arXiv:2302.05211, 2023.

[68] A. Abozeid, A. I. Taloba, R. M. Abd El-Aziz, A. F. Alwaghid, M.
Salem, and A. Elhadad, “An Efficient Indoor Localization Based on Deep
Attention Learning Model.,” Comput. Syst. Sci. Eng., vol. 46, no. 2, pp.
2637–2650, 2023.

[69] Y. Cho, S. Eum, J. Im, Z. Ali, H. Choo, and U. Park, “Deep Photo-
Geometric Loss for Relative Camera Pose Estimation,” IEEE Access,
2023.

[70] M. Lyu, X. Guo, K. Zhang, and L. Zhang, “A Visual Indoor Localization
Method Based on Efficient Image Retrieval,” Journal of Computer and
Communications, vol. 12, no. 2, pp. 47–66, 2024.

[71] Z. Xiao, C. Chen, S. Yang, and W. Wei, “EffLoc: Lightweight Vision
Transformer for Efficient 6-DOF Camera Relocalization,” arXiv preprint
arXiv:2402.13537, 2024.

[72] M. S. Alam, F. B. Mohamed, and A. K. M. B. Hossain, “Self-Localization
of Guide Robots Through Image Classification,” Baghdad Science Jour-
nal, vol. 21, no. 2 (SI), p. 832, 2024.

Alam et al., Optimizing Indoor Camera Localization: An Efficient Approach Integrating Recurrent Neural Networks and
Motion Blur Elimination


