Pengobatan Malaria Melalui Target Enzim

Authors

  • Sri Sundari Bagian Parasitologi, FK Universitas Muhammadiyah Yogyakarta

DOI:

https://doi.org/10.18196/mmjkk.v1i2.1905

Keywords:

target obat, plasmodium falcifarum, prosses metabolisme purin, biosintesis pirimidin, protease, drug targets, Plasmodium falciparum, purine salvage pathway, pyrimidine biosynthesis

Abstract

Plasmodium falciparum causes the most severe form of malaria which is fatal in many cases. The emergence of drug-resistant strains of P. falciparum to the standard therapy of malaria (i.e. kloroquin) requires the new drug en¬zyme targets to be identified. This review covers in details: the enzymes of purin salvage pathway; pyrimidine biosynthesis; protease involved in catabo¬lism on haemoglobin. The review also briefly touches upon other potential targets in the treatment of malaria falciparum.
k
Plasmodium falciparum menyebabkan bentuk penyakit malaria yang paling berat yang menyebabkan kematian dalam banyak kasus. Munculnya strain-strain P. falciparum yang resisten obat antimalaria (yaitu klorokuin) mengharuskan untuk menggali target enzim obat baru yang dapat digunakan untuk pengobatan malaria. Tinjauan ini membicarakan secara detil tentang: enzim-enzim dalam proses metabolisme purin; biosintesis pirimidin dan protease yang terlibat dalam katabolisme hemoglobin. Selain itu, secara singkat tinjauan ini juga akan membicarakan tentang target enzim potensial lainnya untuk terapi malaria falciparum.

References

Bergmman PA., Human L, freese JA., 1991. Xanthine oxydase inhibits growth of Plasmodium falciparum in human erithrocytes in vitro. J. Clin. Invest. 88:1848-55.

Carlson J, Helmby H, Hill AV., Brewser D, Greenwood BM., Wahlgren M. 1990. Human cerebral malaria: association with erithrocyte rosseting and lack of anti-rosetting antibodies. Lancet. 336:1457-60.

Fry M, Pudney M. 1992. Site of action of the antimalarial hydroxunapthoquinone, 2-(tran-4-(4‘- chlorophenyl)cuclohexyl)-3-hydroxy-l, 4-napthoquinone (566C80). Biochem Parmacol. 43:1545-53

Gero AM., Brown GV., Sullivan WJ. 1984. Pyrimidine de novo synthesis during the life cycle of the intraerithrocytic stage of Plasmodium falciparum. J. Parasitol. 9:66-8.

Goldberg DE, Slater AF, Beavis R, Chait B, Cerami A, Haenderson GB. 1991. Hemoglobin degrada¬tion in human malaria phatogen Plasmodium falciparum: A catabolic pathway initiated by a specific aspartic protease. J. Exp. Med. 173:961-9.

Gluzman IY, Francis SE, Oksman A, Smith CE, Daffin KL, Goldberg DE. 1994. Order and the specificity of the Plasmodium falciparum haemoglobin degradation pathway. J. Clin. Invest. 93:1602-8.

Hammond D.J, Burchell J.R, Pudney M. 1985. Inhibition of Pyrimidine biosynthesis de novo in Plasmodium falciparum by 2-(4-t-butylcyclohexyl)-3-hydroxy-1,4-naphthoquinone in vitro. MolBiochem. Parasitol. 14:97-109

Hudson A.T. 1993. Atovaquon - A novel broad spectrum antiinfective drug. Parasitol Today, 9:66-8.

McKerrow JH, Sun E, Rosenthal PJ, Bouvier J. 1994. The protease and pathogenicyti of parasitic protozoa. Annu Rev. Microbiol. 47:821-53.

Reyes P, Rathod PK, Sanchez DJ, Mrema JE, Rieckmann KH, Heidrich HG. 1982. Enzymes of purine and pyrimidine metabolism from the human malaria parasite Plasmodium falciparum. Mol biochem Parasitol. 5:275-90.

Rosenthal PJ, Lee GK, Smith RE. 1993. Inhibition of Plasmodium vinckei cystein proteinase cures murine malaria. Jclin Invest. 91:1052-6.

Rosenthal PJ, Wollish WS, Palmer JT, Rasnick D. 1991. Antimalarial effects of peptides inhibitors of a Plasmodium falciparum cystein proteinase. J clin Invest. 88:1467-72.

Webster HK, Wiesmann WP, Pavia CS. 1984. Adenosine deaminase in malaria infection: effect of 2‘- deoxycoformycin in vivo. Adv. Exp Med biol. 165:225-9.

WHO, 2000. Malaria Control. WHO Plan of Action 2000-2001, World Health Organization Represen¬tative to Indonesia Internet.

WHO. 2001. Malaria in Indonesia: Prevention and Treatment. Internet. 1-5.

Downloads

Issue

Section

Research