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Abstract: Mutations in the glucokinase (GCK) enzyme can disrupt the 
glucose metabolism pathway, potentially increasing the risk of diabetes 
mellitus. This study attempts to examine the impact of GCK mutations in 
silico, focusing on thermodynamic and kinetic aspects. Four specific GCK 
mutations (43 R→H, 131 S→P, 160 D→N, 182 V→L) were analyzed at 
physiologically temperatures (298-313K) and pH 7.4. Computational 
analysis revealed that all mutations significantly altered Gibbs free energy 
(ΔG) values, with the wild-type enzyme showing -14.39J compared to 
substantially reduced negative values (-1.23J to -2.94J) in mutant forms. 
Enthalpy changes (ΔH) demonstrated significant linear regression 
relationships (p<0.05) for most mutations, indicating thermodynamic 
destabilization of the enzyme structure. Reaction rate constants showed 
decreased catalytic efficiency across all mutations (wild-type: 1.614×1027 s-
1 vs. mutants: 1.606 - 1.607×1027 s-1). Three-dimensional visualizations 
confirmed structural perturbations at mutation sites. These findings 
suggest that GCK mutations impair glucose-sensing capabilities through 
dual mechanisms: reduced catalytic efficiency and thermodynamic 
instability, potentially the altered insulin secretion thresholds observed in 
Maturity-Onset Diabetes of the Young type 2 (MODY2) and other diabetes 
subtypes. Integrating kinetic and thermodynamic parameters provides 
valuable insights for developing targeted therapeutics such as glucokinase 
activators (GKAs), offering a ray of hope for diabetes treatment.   
 

Keywords: Diabetes Mellitus; Enzyme Kinetics; Glucokinase; MODY2; 
Thermodynamics.  

INTRODUCTION 
 

Diabetes mellitus (DM) is a complex metabolic disorder characterized by chronic hyperglycemia due 
to impaired insulin secretion, insulin action, or both.1,2 Based on its etiology, DM is classified into several main 
types: type 1, type 2, and monogenic forms, such as MODY. The MODY is a monogenic form of diabetes 
characterized by autosomal dominant inheritance, which results from gene mutations that affect insulin 
production and are often misdiagnosed as type 1 or type 2 diabetes. Various subtypes exist depending on the 
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specific gene involved. One of the most studied forms of MODY is GCK-MODY / MODY2, caused by GCK gene 
mutations.3 In addition, there is also the clinically important condition glucokinase hyperinsulinism (GCK-HH), 
which reflects another spectrum of GCK mutations that cause hypoglycemia.4,5 

Glucokinase, a key enzyme in glucose metabolism, acts as a glucose sensor in pancreatic β-cells and a 
regulator of glucose flow in the liver. What makes it truly fascinating are its unique kinetic characteristics of 
low affinity for glucose and its resistance to inhibition by glucose-6-phosphate. This allows GCK to act as a 
metabolic switch that responds to glucose levels in the blood.6,7 Mutations in GCK can lead to fundamental 
changes in enzyme function, which ultimately directly impact the regulation of insulin secretion and blood 
glucose balance.8,9 

Kinetically, GCK mutations can alter important enzymatic parameters such as Km (affinity to glucose) 
and Kcat (catalytic capacity), as well as the Kcat/Km ratio. This ratio, as an indicator of catalytic efficiency, 
plays a crucial role in understanding enzyme activity.10,11 In MODY2, mutations are generally loss-of-function, 
increasing Km and/or decreasing Kcat, causing decreased β-cell sensitivity to glucose and resulting in mild 
hyperglycemia that is stable since childhood. In contrast, in GCK-HH, mutations are gain-of-function that 
decrease Km or increase Kcat, causing excess insulin release even at low glucose levels.10 

It is important to note that not all effects of mutations can be explained from the kinetic angle alone, 
but also from the thermodynamic aspect. The significance of these analyses cannot be overstated. 
Thermodynamic analysis provides crucial insight into how mutations can alter protein fold stability and the 
distribution of active/inactive conformations.12 Changes in ΔG due to mutations can affect the proportion of 
active forms of GCK, thus explaining both increases and decreases in enzyme activity without significant 
changes in Km or Kcat values. The integration of kinetic and thermodynamic data is not just beneficial, but 
essential for a more thorough understanding of the structure-function relationship of this enzyme.13 

Interestingly, although GCK is not a gene directly involved in type 1 (T1DM) or type 2 (T2DM) DM, recent 
studies have shown that mutations in GCK can affect the activation threshold of insulin secretion.14 In T1DM, 
showing autoimmune damage to pancreatic β-cells, GCK mutations that reduce glucose sensitivity can 
accelerate β-cell exhaustion and increase susceptibility to metabolic stress. In T2DM, insulin resistance 
accompanied by GCK mutations can exacerbate early-stage insulin secretion defects, thereby exacerbating 
hyperglycemia.15 Research in Sidoarjo, East Java, has found a mutation at point rs7903146 in patients 
diagnosed with type 2 diabetes in a wound house in Sidoarjo, East Java. Therefore, although not causal, GCK 
mutations can be a modifier contributor in the pathogenesis of both types of DM.16 

Research on mutations in GCK associated with kinetics and thermodynamics has been relatively 
scarce. Therefore, this study, which will analyze GCK mutations affecting enzyme function in terms of kinetics 
and thermodynamics with a computational approach, is a novel and promising endeavor. The potential 
development of mutation-based therapies, such as glucokinase activators (GKAs), adds an exciting dimension 
to this research. 
 
MATERIALS AND METHOD 
Instrumentation 

The computer used has a 13th Gen Intel(R) Core (TM) i5-1335U 1.30 GHz Processor specification, 16.0 
GB RAM (15.7 GB usable), type 64-bit operating system, and an x64-based processor. 
 
Source Glucokinase Enzyme 

The glucokinase enzyme sequence was downloaded from https://www.uniprot.org/ with code P35557-
HXK4_HUMAN. The enzyme consists of 465 amino acid residues and was downloaded using the FASTA 
format. 1 

 
Glucokinase Mutation Analysis 

In this study, 4 glucokinase mutation models were used, namely 43 R → H; 131 S →  P; 160 D →  N; and 

182 V →  L. These mutations would produce G by entering temperature data (K) 298, 303, 310, and 313 with 
pH 7.4 on the webserver https://folding.biofold.org/i-mutant/i-mutant2.0.html.18,19 
 
Glucokinase Mutation Visualization 

The GCK mutations are visualized in 3 dimensions using a free webserver, 
http://genetics.bwh.harvard.edu/pph2/.20 
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Bioenergetics of Glucokinase Mutations 

 Bioenergetics calculations used thermodynamic parameters, namely G and enthalpy change (H). 

The value of H can be calculated from the thermodynamic relationship, namely G = H-TS. The 

relationship can be established using linear regression with the X-axis being T, while the Y-axis is G. The 

value of H would be calculated on each glucokinase mutation model.21 If the value of G = negative, the 

reaction would proceed spontaneously, while if G = positive, the reaction would not proceed 

spontaneously. Meanwhile, if H = positive, it means that the reaction took place endergonically or required 

ATP, while H = negative means that the reaction took place exergonically or produced ATP. 
 

Kinetics of Glucokinase Mutation 
Kinetics is a parameter that reveals the rate of the glucokinase catalysis reaction to glucose as a 

substrate. The reaction rate can also be interpreted as the speed of the glucose-catalyzed reaction by 
glucokinase. The reaction rate can be determined by calculating the value of the reaction rate constant (k). 
22,23 The relationship between reaction rate and G can be determined by using the Eyring equation24 as 
follows: 

𝑘 =
𝐾𝑏. 𝑇

ℎ
𝑒
∆𝐺
𝑅𝑇 

 
Description:  
k  = reaction rate (s-1) 
Kb  = Botzman constant = 1.381 × 10−23 J K-1 
h = Planck constant = 6,626 × 10−34 J s 
R = Ideal gas constant = 8,314 J K-1 
T = temperature (K) 

G = delta Gibbs free energy (Joule) 
 
 
RESULT 
 

Glucokinase is a key enzyme involved in carbohydrate metabolism. Located in the cytoplasm, this 
enzyme converts glucose into glucose-6-phosphate. The sequence of this enzyme can be seen in Figure 1. 
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Figure 1. glucokinase sequence enzyme with P35557 · HXK4_HUMAN. 
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The sequence in Figure 1 was then modified by mutation using the help of https://folding.biofold.org/i-

mutant/i-mutant2.0.html at various temperatures and pH = 7.4, resulting in the value of G as in Table 1. 
 

Table 1. Gibbs Free Energy (G) and Entalphi Changes(H) in T = 310 K; pH=7.4 

Mutation G (J) H (J) Linear Regression p 

Non 
43 R→ H 
131 S →P 
160 D → N 
182 V → L 

-14.39 
-1.23 
-1.30 
-2.94 
-1.30 

1.173.57 
36.64 
28.40 
19.366 
42.185 

G= 0.0007 – 15.2115 H 

G= 0.0078 – 1.515 H 

G= 0.0005 – 1.3142 H 

G= 0.0041 – 3.0914 H 

G= 0.0049 – 1.4827 H 

0.0022* 
0.0013* 
0.3119 

0.0006* 
0.0034* 

*) p < 0.05 = significant linear graphic 
 
Table 1 illustrates that the DG value tends to lead to positive values, signifying a decrease in enzyme 

structure stability. This decrease in stability has a profound impact on the reaction's spontaneity, causing a 
significant slowdown in the conversion of glucose by glucokinase. The structure of the mutated enzyme, a 
key focus of this current research, is presented in Figure 2. 
 

  
(a) (b) 

  
(c) (d) 

Figure 2. (a) Mutation 43 R→ H (b) 131 S →P (c) 160 D → N (d) 182 V → L (red and blue color indicates where the 

mutation occurred) 
 
Figure 2 depicts the mutations that can cause changes in the stability of the protein structure that can 

disrupt the enzyme's active site. This disruption results in a decrease in the rate of binding to the substrate. 
This can be shown in Table 2. 
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Table 2. Reaction rate based on the Eyring equation  

Mutation G (J mol-1) k (1027 s-1) 

Non 
43 R→ H 
131 S →P 
160 D → N 
182 V → L 

-14.39 
-1.23 
-1.30 
-2.94 
-1.30 

1.614 
1.606 
1.606 
1.607 
1.606 

 
DISCUSSION 

Research on GCK mutations has been conducted to understand the important role of this enzyme as 
the main glucosensor in pancreatic β-cells and hepatocytes, regulating blood glucose levels, especially in 
individuals with metabolic disorders such as MODY2.25 The GCK catalyzes the phosphorylation reaction of 
glucose to glucose-6-phosphate, the first stage in glucose metabolism. Research by Li et al. 26 states that 
mutation studies on the GCK gene show that specific amino acid changes can decrease the enzyme's affinity 
for glucose and its catalytic rate, increasing the glucose threshold for insulin secretion. This explains the 
symptoms of chronic mild hyperglycemia in patients with MODY2.25 

The research by Gay et al. 27 has delved into the intricate world of GCK mutations, identifying mutations 
such as G261R, V62M, and T228M that cause instability of the enzyme structure and disrupt the dynamics of 
the active domain in vitro and silico. The meticulous kinetics analysis revealed that these mutations reduced 
the Kcat value and increased Km, thereby lowering the catalytic efficiency. Furthermore, the thermodynamic 
simulations unveiled that the mutation increased ΔG and ΔH, shifting the reaction from a spontaneous to an 
endergonic state. These mutations also weaken crucial hydrogen interactions and cause the enzyme 
structure to become more flexible and unstable in physiological environments.12, 28 

This study, with its significant findings, showed that the mutation of the enzyme GCK caused a 
decrease in the catalytic rate.10,29 This indicates that the mutation reduces the reaction speed and decreases 
the enzyme's affinity for glucose, thus disrupting the physiological function of GCK as a glucose sensor in 
pancreatic β-cells.29 

In biochemical systems, the rate of enzymatic reactions is strongly influenced by the enzyme's ability 
to stabilize the transition state. This study revealed that GCK mutation plays a significant role in disrupting 
the stabilization of the transition state, leading to an increase in ΔG and a decrease in the enzymatic reaction 
rate. 30, 31 

Research by Xie et al. 32 GCK has shown that mutations in GCK, a key enzyme in glucose metabolism, 
can significantly affect the thermodynamics of the glucose phosphorylation reaction. These mutations can 
disrupt the conformational transition of the enzyme from inactive to active state and reduce the stability of 
the enzyme-substrate complex during the transition phase. An increased ΔG value from normal conditions 
indicates that the system becomes thermodynamically unfavorable to carry out the reaction. Under normal 
physiological conditions, converting glucose to glucose-6-phosphate (G6P) by GCK is spontaneous and 
requires ATP. This reaction thermodynamically reflects that the system naturally moves towards product 
formation by requiring additional external energy input. However, the results of this study revealed that 
mutations in GCK caused a decrease in the ΔH value. This situation is interpreted as a decrease in ATP 
utilization, resulting in a decrease in glucose in the phosphorylation reaction.21, 33 

In a typical system, one ATP molecule efficiently donates a phosphate group to glucose. However, 
when a mutation disrupts the affinity for glucose or the enzyme's ability to stabilize the transition state, the 
efficiency of ATP utilization decreases. This can lead to an "ATP-wasting effect," a condition where ATP is 
consumed, but the reaction does not proceed optimally or even undergoes a reverse reaction. This finding 
has significant implications, suggesting that more ATP molecules may be required to produce the same 
amount of glucose-6-phosphate under normal conditions.32 

Thermodynamically and kinetically occurring glucokinase mutations have the potential to cause 
conformational changes at the enzyme's active site, which could affect molecular binding with regulatory 
proteins or small molecule ligands, such as glucokinase activators. This potential, based on the results of 
previous research using molecular docking analysis, underscores the significant role this current research can 
play in drug development. These studies have shown that new drugs used for type 2 diabetes, such as 
glucokinase activators like dorzagliatin and RO-28-1675, work by binding to the allosteric site and stabilizing 
the enzyme's active site (Chow et al., 2023; Mehra et al., 2024).34-35 
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Comparison with dorzagliatin, a dual-acting GKA recently approved in China, showed that wild-type 
GCK has higher catalytic efficiency and binding stability with the activator than specific GCK mutants. The 
reduced catalytic rate (from 1.614 × 10²⁷ s⁻¹ to ~1.606 × 10²⁷ s⁻¹ in the mutant) and thermodynamic instability (a 
reduced ΔG value) observed in this current study underscore the urgent need to understand the effects of 
mutations on drug efficacy. This understanding could explain why GKA exhibits varying efficacy depending 
on the mutation context.36 

This research uncovers a complex implication of higher metabolic load on pancreatic β-cells and 
hepatocytes regarding cellular bioenergetics. The revelation that ATP, a crucial component of insulin 
secretion, calcium signaling, and ion homeostasis, is also required for other important processes adds a layer 
of complexity to our understanding. The inefficient increase in ATP consumption by GCK due to the mutation 
disrupts the intracellular energy balance, potentially leading to metabolic dysfunction. This is particularly 
relevant in diabetes, as both β-cells and the liver play a key role in maintaining blood glucose levels.33 

This thermodynamic phenomenon, as revealed by this current research, reinforces previous studies 
that glucokinase mutations affect kinetics and cause structural destabilization and disruption of energy 
homeostasis at the molecular level. The defect may lead to a higher insulin activation threshold in individuals 
carrying this mutation, as β-cells require a greater glucose concentration to induce insulin release. This 
understanding could pave the way for more effective treatments for hyperglycemia in patients with 
MODY2.37 

The Glucokinase mutations not only decrease the enzyme's ability to recognize and process glucose 
kinetically but also cause changes in the thermodynamic properties of the reaction, making it more 
dependent on energy input (ATP). Loss-of-function GCK mutations can affect enzyme performance through 
two main mechanisms: (1) decreased catalytic efficiency due to impaired substrate interaction and (2) 
structural and thermodynamic instability that makes the reaction endergonic and biologically unfavorable.38 
Understanding these two aspects is crucial in designing molecular interventions that restore structural 
stability or enhance enzymatic activity through pharmacological or gene therapy approaches. 
 
CONCLUSION 

The results of these present studies reveal new insights into the kinetic and thermodynamic effects of 
GCK mutations via an extensive computational analysis.  Our findings elucidate the molecular underpinnings 
of glucokinase failure in diabetes by illustrating how particular mutations affect catalytic efficiency and 
energy dynamics.  These findings not only improve our comprehension of the pathophysiology related to 
GCK but also provide support for the development of targeted glucokinase activators (GKAs) as a promising 
therapeutic approach.  In the end, this study establishes the foundation for tailored diabetes treatment 
strategies that target specific mutations. 
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