ARIMA Models of Dengue Cases in Kartamantul, Based on Area Risk Classification

Agus Kharmayana Rubaya, Hari Kusnanto, Lutfan Lazuardi, Tri Baskoro T. Satoto


Dengue is still one of the public health problems in Indonesia. In this study, three temporal indices (frequency, duration and intensity indices) based on serologically confirmed cases between 2010 and 2014 in Yogyakarta Municipality, Sleman Regency and Bantul Regency (acronym: Kartamantul), which are spatially analyzed, used to determine the risk level of Dengue transmission for each village in that area in 2015. Subsequently, ARIMA models with Box-Jenkins approach for those risk classification are developed to predict the number of cases in 2015. The results show that the risk categorization yielded from those Dengue data series has relatively high concordance with risk classification resulting from Dengue data in 2015 (the Kappa coefficient: 0.593; p-value < 0.001). The best ARIMA models for both the “high” and “medium” risk villages are (0, 1, 0)(1, 1, 0)12; and for “low” risk areas it is (0, 1, 0)(0, 1, 0)12; which means that both models demonstrate a seasonal pattern. The analysis shows that the ARIMA models have relatively good predictability for the upcoming number of cases. Therefore, these analyses approach is suggested to be adopted for complementing the techniques of area stratification and transmission period which are commonly used in Dengue surveillance.


Dengue risk area; Spatio-temporal analysis; Time series analysis

Full Text:



Simmons CP, Farrar JJ, Chau N van V, Wills B. Dengue: current concepts. N Engl J Med. 2012;366(15):1423–32.

Guzman MG, Harris E. Dengue. Lancet. 2015;385:453–65.

Hopp MJ, Foley JA. Worldwide fluctuations in dengue fever cases related to climate variability. Clim Res. 2003;25:85–94.

Ooi E-E, Gubler DJ. Dengue in Southeast Asia: epidemiological characteristics and strategic challenges in disease prevention. Cad saude publica / Minist da Saude, Fund Oswaldo Cruz, Esc Nac Saude Publica. 2009;25 Suppl 1:S115–24.

Shepard DS, Undurraga E a., Halasa Y a. Economic and disease burden of Dengue in Southeast Asia. PLoS Negl Trop Dis. 2013;7(2):e2055.

World Health Organization Regional Office for South-East Asia. Dengue [Internet]. 2012 [cited 2013 Apr 5]. Available from:

Karyanti MR, Uiterwaal CSPM, Kusriastuti R, Hadinegoro SR, Rovers MM, Heesterbeek H, et al. The changing incidence of Dengue Haemorrhagic Fever in Indonesia : a 45-year registry-based analysis. BMC Infect Dis. 2014;14(1):412–8.

Bank Data Kementerian Kesehatan RI. No Title [Internet]. 2012 [cited 2012 Oct 31]. Available from:

Dinas Kesehatan Provinsi DIY. Profil Kesehatan Provinsi D. I. Yogyakarta tahun 2011. Yogyakarta: Dinas Kesehatan Provinsi DIY; 2012.

Dinas Kesehatan Provinsi DIY. Profil Kesehatan Provinsi D. I. Yogyakarta Tahun 2012. Yogyakarta: Dinas Kesehatan Provinsi DIY; 2013.

World Health Organization. Global Strategy for Dengue Prevention and Control, 2012-2020. Geneva: World Health Organization; 2012.

Tabachnick BG, Fidell LS. Using Multivariate Statistics. 5th ed. Boston: Pearson; 2007.

Box GEP, Jenkins GM. Time Series Analysis, Forecasting, and Control. Revised. San Fransisco: Holden Day; 1976.

Rotela C, Fouque F, Lamfri M, Sabatier P, Introini V, Zaidenberg M, et al. Space-time analysis of the dengue spreading dynamics in the 2004 Tartagal outbreak, Northern Argentina. Acta Trop. 2007;103(1):1–13.

Wen TH, Lin NH, Lin CH, King CC, Su MD. Spatial mapping of temporal risk characteristics to improve environmental health risk identification: A case study of a dengue epidemic in Taiwan. Sci Total Environ. 2006;367(2–3):631–40.

Wen TH, Lin NH, Chao DY, Hwang KP, Kan CC, Lin KCM, et al. Spatial-temporal patterns of dengue in areas at risk of dengue hemorrhagic fever in Kaohsiung, Taiwan, 2002. Int J Infect Dis. 2010;14(4):334–43.

Dom NC, Ahmad AH, Ishak AR, Ismail R. Assessing the Risk of Dengue Fever Based On the Epidemiological , Environmental and Entomological Variables. Procedia - Soc Behav Sci [Internet]. 2013;105:183–94. Available from:

Dom NC, Latif ZA, Ahmad AH, Ismail R, Pradhan B. Manifestation of GIS tools for spatial pattern distribution analysis of dengue fever epidemic in the city of Subang Jaya, Malaysia. EnvironmentAsia. 2012;5:82–92.

Rasidi MNM, Sahani M, Othman H, Hod R, Idrus S, Ali ZM, et al. Aplikasi Sistem Maklumat Geografi untuk pemetaan reruang-masa: suatu kajian kes Denggi di Daerah Seremban, Negeri Sembilan, Malaysia. Sains Malaysiana. 2013;42(8):1073–80.

Ditjen P2 & PL Kementerian Kesehatan RI. Pencegahan dan Pemberantasan Demam Berdarah Dengue di Indonesia. Jakarta: Ditjen P2 & PL Kementerian Kesehatan RI; 2010.

Hu W, Tong S, Mengersen K, Connell DES. Weather variability and the incidence of Cryptosporidiosis : comparison of time series poisson regression and SARIMA models. Ann Epidemiol. 2007;17(9):679–88.

Zhang X, Liu Y, Yang M, Zhang T, Young AA, Li X. Comparative study of four time series methods in forecasting Typhoid Fever incidence in China. PLoS One. 2013;8(5):e63116.

Sitepu MS, Kaewkungwal J, Luplerdop N, Soonthornworasiri N, Silawan T, Poungsombat S, et al. Temporal patterns and a disease forecasting model of Dengue Hemorrhagic Fever in Jakarta based on 10 years of surveillance data. Southeast Asian J Trop Med Public Health. 2013;44(2):206–17.

Silawan T, Singhasivanon P, Kaewkungwal J, Nimmanitya S, Suwonkerd W. Temporal Patterns and Forecast of Dengue Infection in Northeastern Thailand. Southeast Asian J Trop Med Public Health. 2008;39(1):90–8.

Runge-ranzinger S, Horstick O, Marx M, Kroeger A. What does Dengue disease surveillance contribute to predicting and detecting outbreaks and describing trends ? Trop Med Int Heal. 2008;13(8):1022–41.

United Nations Environment Programme (UNEP). Early Warning Systems: a State of the Art Analysis and Future Directions [Internet]. Environmental Development. Nairobi: Division of early Warning & Assessment (DEWA), United Nations Environment Programma (UNEP); 2012. Available from:

Racloz V, Ramsey R, Tong S, Hu W. Surveillance of Dengue fever virus : A review of epidemiological models and early warning systems. PLoS Negl Trop Dis. 2012;6(5):e1648.

Drake JM. Fundamental limits to the precision of early warning systems for epidemics of infectious diseases. PLoS Med. 2005;2(5):461–3.


Article Metrics

Abstract view : 23 times
PDF - 23 times


  • There are currently no refbacks.

Copyright (c) 2018 JMMR (Jurnal Medicoeticolegal dan Manajemen Rumah Sakit)

JMMR (Jurnal Medicoeticolegal dan Manajemen Rumah Sakit) are indexed by:


Ruang Jurnal JMMR, Gedung Pascasarjana Universitas Muhammadiyah Yogyakarta
Brawijaya Street, Tamantirto, Kasihan, Bantul, D.I. Yogyakarta, Indonesia

Information for Author click HERE

Creative Commons License
JMMR is licensed under Creative Commons Attribution 4.0 International License.

View My Journal of JMMR