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INTRODUCTION 
Acidic soil covers 25% of Indonesia’s total land area, about 45.79 million hectares, with 5.22  

million hectares used for crop cultivation (BPS, 2020). Acidic soil is suboptimal, so harvest yields are 
below the national average each season. However, acidic soil is widely used for crop cultivation because  
the optimal area of ​​agricultural land is decreasing. According to the BPS (2018), the conversion of 
rice fields reaches 100,000 to 150,000 hectares per year, which is not comparable to the creation of 
new rice fields, which is only 60,000 hectares per year. However, agricultural extensification efforts 
utilize suboptimal land, such as acid soil (Arista et al., 2023). However, soil acidity is considered 
a key variable in soil chemistry because of its significant impact on chemical reactions involving 
essential plant nutrients (Gerke, 2022; Javed et al., 2022; Raza et al., 2021; Sintorini et al., 2021).

Agricultural practices can accelerate the process of soil acidification during soil weathering  
(Bolan et al., 2023; Chen et al., 2022). Agricultural practices with the continuous addition of chemical 
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ABSTRACT 
Acid soil is widely distributed in Indonesia but underexploited for agriculture due to limited nitrogen availability 
and aluminium toxicity. Nitrogen fertilizer and rhizobium are crucial to improving plant growth, especially in 
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growth, nodulation, and yield of peanuts cultivated in acidic soil. A factorial randomized complete block design 
with two factors: nitrogen fertilizer application (0, 50, 100, 150 kg ha-1) and rhizobium inoculation (without 
rhizobium, rhizobium at 10 g kg-1 seed, and rhizobium sourced from peanut plantations). The combination of 
100 kg ha-1 nitrogen and rhizobium from peanut plantations resulted in the highest leaf count (675.33 leaves 
per plant). A nitrogen dose of 50 kg ha-1 produced the highest effective number of nodules and total nodules. 
The optimum nitrogen fertilizer dose is 44 kg ha-1 for nodule growth. 50 kg ha-1 nitrogen dose produced the 
highest number of pods and seed weight, namely 48.67 pods and 407.79 g of seeds. These findings suggest 
that when applied at an appropriate dose, nitrogen fertilizer enhances peanut growth, nodulation, and yield 
in acidic soil. However, excessive nitrogen application may induce antagonism with the nodulation process, 
reducing overall yield.
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fertilizers can increase the concentration of H+ ions in the soil (Han et al., 2021; Wan et al., 2021). 
An increase in H+ ions results in soil acidity, which hurts soil microbial and plant activity (Daba 
et al., 2021; Raza et al., 2020). Additionally, soil acidity makes metals more soluble and mobile, 
preventing plants from accessing vital nutrients (Alves et al., 2019; Wang et al., 2023a; Zhang et al., 
2019). Low soil pH makes certain essential plant nutrients insoluble and less accessible, including 
phosphorus, calcium, magnesium, and molybdenum (Abdul Halim et al., 2018; Wang et al., 2023b) 
and can affect the decline in plant growth (Baccari & Krouma, 2023; Barrow & Hartemink, 2023). 
Planting plants from the Leguminaceae family is a strategy to utilize acidic soil, such as peanuts 
(Abd-Alla et al., 2023), because it is supported by the ability of legume plants to form a symbiotic 
relationship with soil microorganisms such as rhizobium (Yang et al., 2022). Legumes can fix nitrogen  
in the atmosphere and increase available nitrogen through biological nitrogen fixation (Basile & 
Lepek, 2021; Goyal & Habtewold, 2023; Ramoneda et al., 2021).

An estimated 1.75 × 1011 kilograms of nitrogen are fixed globally each year, with 8.0 × 1010 kg 
coming from legume symbiosis and an average of 20–200 kg of fixed N ha−1 year−1 (Kebede, 2021). 
Thus, legume-rhizobium symbiosis-mediated biological nitrogen fixation is an attempt to alter soil 
organism activity and boost nutrition availability (Goyal et al., 2021; Grzyb et al., 2021; Mesfin et 
al., 2020). The lack of rhizobium bacteria causes nodules to form on peanut roots, so plants cannot 
independently fix free nitrogen in the air through nitrogen fixation. Land that lacks nitrogen and does 
not contain rhizobium bacteria will result in the vegetative growth of peanut plants being hampered 
because they lack the nutrient nitrogen. The lack of rhizobium bacteria in the soil causes farmers to 
spend more on inorganic fertilizers to meet the need for nitrogen nutrients (Etesami, 2022; Vanlauwe 
et al., 2019). Rhizobium bacteria can infect the roots of peanut plants and create colonies to form 
nodules that trap free nitrogen in the air. Nitrogen available in the soil causes the rhizobium to be 
ineffective in collecting free nitrogen in the air; conversely, if nitrogen is not available in the soil, 
the rhizobium effectively increases free nitrogen in the air (Ramoneda et al., 2021). Optimal doses 
of nitrogen fertilizer are needed to ensure the presence of rhizobium bacteria so that mutualistic 
symbiosis with peanuts can occur in peanut growth. The research examines the effect of antagonism 
and nitrogen fertilizer on peanuts’ growth, nodulation, and yield in sour planting. 

MATERIALS AND METHODS 
Study site and soil characteristics 

At a height of 148 meters above sea level, the study was conducted at the Laboratory Experiment 
Field of the Faculty of Agriculture, Sebelas Maret University, Jumantono, Karanganyar Regency. It 
was situated at 7⁰37’48.82” South Latitude and 110⁰56’52.17” East Longitude. The research used 
alfisol soil with soil acidity characteristics of 5.6 (acid category); C-organic 0.65 % (very low); total 
nitrogen 0.06 % (deficient); P2O5 total 16 ppm (medium); K2O total 12.26 mg/100g (low); C/N 
ratio 4.84 (very low). Planting was carried out in polybags measuring 35 x 35 cm, and the distance 
between the polybags was 25 x 25 cm. The planting medium used is acid soil and cow dung fertilizer  
in a ratio of 1 : 1. The seeds used are Kancil variety peanuts. Basic fertilizer is applied twice before 
planting, using SP36 fertilizer at 200 kg ha-1 or 0.8 g polybag-1 and KCl fertilizer at 50 kg ha-1 or 
0.2 g polybag-1.
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Experimental design
The research used a factorial complete randomized block design with two factors. The first factor 

is the dose of Nitrogen fertilizer with four levels, namely 0, 50, 100, and 150 kg ha-1. The second 
factor is the application of rhizobium sources at three levels: without rhizobium, rhizobium dose of 
10 g kg-1 seeds, and source of rhizobium in soil used from peanut planting. The research was repeated 
three times. Nitrogen fertilizer treatment was carried out at planting, and rhizobium treatment was 
carried out on peanut seeds before planting. Treatment of rhizobium from former peanut plantings 
was carried out by mixing the soil weighing 15 g into the planting medium.

Observation variables include growth variables, namely plant height four weeks after planting 
(WAP) and number of leaves at twelve WAP. The nodulation variables observed were the number 
of nodules and the effective number of nodules carried out at 10 WAP. The outcome variables are 
the number of pods and the weight of 1000 seeds. Outcome variables were observed at 90 days after 
planting. 

Data Analysis
Analysis of Variant level 5% was used to examine the observational data. If it was significant, the 

5% Duncan Multiple Range Test was used to determine whether there were significant differences 
between treatments. The ideal nitrogen dosage was found by regression.

RESULTS AND DISCUSSION 
The research results showed that the combination of nitrogen fertilizer doses with the  

application of rhizobium sources affected peanut plant height four weeks after planting (Table 1). The  
optimum nitrogen fertilizer dose was 54.83 kg ha-1, with rhizobium inoculum from soil used for peanut  
plantations to produce the highest plant height, 15.70 cm, with a correlation coefficient of 0.99. 
The addition of nitrogen can stimulate the growth of rhizobium bacteria (Shome et al., 2022). 
Also, rhizobium bacteria from used peanut soil can form a symbiotic relationship with the perfect  
peanut root system to maximize the nitrogen fixation process (Boivin et al., 2020; Yang et al., 2022). 
The combination of nitrogen fertilizer doses with the application of rhizobium sources affects the  
number of leaves (Table 2). The dosage of 100 kg ha-1 of nitrogen fertilizer with rhizobium inoculum 
from soil used to plant peanuts showed the highest number of leaves, namely 675.33. However, the  
number of leaves in this treatment combination was similar to the treatment combination of 100 kg 
ha-1 of nitrogen and rhizobium. The compatibility of legin rhizobium and rhizobium from soil used 
for peanut plantations is high. Rhizobium can associate with the host to produce many nodules and fix 
nitrogen for plant growth (Fahde et al., 2023; Mathenge et al., 2019). The efficacy of nitrogen-fixing 
bacteria in peanuts will be increased by applying a specific amount of nitrogen fertilizer (Jaiswal et 
al., 2021). The availability of nitrogen will influence cell division in the apical meristem, resulting 
in the formation of tall leaves (Sun et al., 2020). Rapid leaf growth is impacted by cell division, 
which can also result in more leaves because it produces more new leaves (Sakakibara, 2021; Shi 
& Vernoux, 2022). 
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The number of nodules and the number of effective nodules were shown to be influenced by the 
nitrogen fertilizer dosage (Table 3). The number of peanut nodules formed by a nitrogen dose of 
50 kg ha-1 was 225, significantly different from 150 kg ha-1.  With a coefficient of 0.97, the most 
significant number of peanut nodules, or 391.56 grains, were produced by the optimal nitrogen  
fertilizer dose of 44 kg ha-1 (Figure 1). Peanuts are a family of legumes capable of forming nodules 
for nitrogen fixation. Low nitrogen fertilizer doses produce high nodules. Legumes have been proven 
to significantly increase the abundance of rhizosphere soil microorganisms (Malviya et al., 2021). 
Through nitrogen-fixing enzymes, nitrogen-fixing bacteria control the nitrogen-fixing process (Lai 
et al., 2022). Based on Abd-Alla et al. (2023), giving the highest dose of nitrogen fertilizer produces 

Table 1. Combination of nitrogen fertilizer doses and rhizobium sources on plant height four 
weeks after planting

Nitrogen Fertilizer Dosage 
(kg.ha-1)

Source of Rhizobium
AverageWithout 

Rhizobium Rhizobium Land Used by Peanut Plantings

0 14.30abcde 15.33abc 13.00bcde 14.21a
50 13.13abcde 13.80abcde 15.73a 14.22a
100 15.70ab 13.53abcde 14.33abcd 14.52a
150 12.67cde 11.40de 8.50e 10.86b
Average 13.95a 13.52a 12.89a +

Note: Numbers followed by the same letter notation in columns and rows are not significantly different in the DMRT test at the 5% 
level. (+): there is interaction

Table 2. Combination of nitrogen fertilizer doses and rhizobium sources on leaf number 10 
weeks after planting 

Nitrogen Fertilizer Dosage 
(kg.ha-1)

Source of Rhizobium 
AverageWithout 

Rhizobium Rhizobium Land Used by Peanut Plantings

0 606.00 552.00 629.00 595.67
50 555.67 569.33 571.33 565.44
100 598.33 636.00 675.33 636.56
150 529.67 543.67 427.00 500.11
Average 572.42 575.25 575.67 +

Note: Numbers followed by the same letter notation in columns and rows are not significantly different in the DMRT test at the 5% 
level. (+): there is interaction 

Table 3. The role of nitrogen fertilizer dosage and rhizobium source on nodule growth
Treatment Number of nodules Effective number of nodules
Nitrogen Fertilizer Dosage (kg.ha-1)
0 358.56a 18.89a
50 363.00a 19.33a
100 351.33a 18.67a
150 138.00b 13.67b
Source of Rhizobium
No Inoculant 311.17 17.25
Rhizobium inoculant 301.17 17.67
Land Used by Peanut Plantings 295.83 18.00
Average 302.72 17.64
Interaction - -

Note: Numbers followed by the same letter notation in one column indicate that they are not significantly different in the DMRT test 
at the 5% level. (-): no interaction
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the lowest number of nodules because when there is excess nitrogen in the soil, rhizobium bacteria 
cannot fix nitrogen in the air. A nitrogen fertilizer dose of 50 kg ha-1 can produce 5.66 effective  
peanut nodules and more than a nitrogen fertilizer dose of 150 kg ha-1 (Table 3). The optimum nitrogen 
fertilizer dose of 49 kg ha-1 produced the highest number of effective peanut nodules, namely 19.93 
grains, with a correlation coefficient of 0.98. Low nitrogen fertilizer doses can increase the activity 
of active rhizobium bacteria in the nodules to provide nitrogen for peanut plants. Peanut plants will 
produce enzymes in soil conditions low in nitrogen, so the rhizobium actively fixes nitrogen and 
results in effective active nodules (Etesami, 2022; Solanki et al., 2020).

The level of nitrogen use has an essential influence on rhizosphere microorganisms and changes in 
community growth and development (Li et al., 2022; Ren et al., 2020). Numerous studies have shown 
that the amount of nitrogen in the soil significantly impacts the makeup of the bacterial population  
and that short-term fertilization also alters the composition of the rhizobia community (Yu et al., 
2021). Fertilization increases the abundance of nitrogen-fixing bacterial species (Wassermann et 
al., 2023). In Northeast China’s black soil region, it helps to increase the quantity and diversity of 
nitrogen-fixing bacterial genes (Liu et al., 2021). However, the results showed that the source of 
rhizobium did not affect the number of nodules and the number of effective nodules (Table 3), which 

Table 4. Effect of nitrogen fertilizer dose and rhizobium source on peanut yield
Treatment Number of Pods Weight of 1000 Seeds (g)
Nitrogen Fertilizer Dosage (kg.ha-1)
0 36.11b 380.13a
50 48.67a 407.79a
100 46.33a 383.35a
150 38.56a 337.16b
Source of Rhizobium
No Inoculant 45.58 380.90
Rhizobium inoculant 44.42 370.63
Land Used by Peanut Plantings 37.25 379.80
Average 42.42 377.11
Interaction - -

Note: Numbers followed by the same letter notation in one column indicate that they are not significantly different in the DMRT test 
at the 5% level. (-): no interaction

Figure 1. Regression test for the number of peanut nodules at 4 WAP with the administration 
of several doses of nitrogen fertilizer
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can be caused by rhizobium incompatibility. The availability of organic carbon can be a source of 
energy for rhizobium bacteria to work effectively. Previous research showed that the organic C  
content at the three research locations was low and produced the lowest rhizobium bacteria population 
compared to locations with moderate organic C content (Li et al., 2022). Therefore, it is necessary to 
add organic materials in the form of compost, manure, and green manure to increase the population 
of rhizobium bacteria in the soil. The soil used to plant peanuts contains rhizobium bacteria, which 
can infect roots and form nodules on legume plants (Jach et al., 2022). Rhizobium in soil used to 
harvest peanuts can still survive under environmental conditions supporting rhizobium bacteria 
growth (Neelipally et al., 2020). 

The results showed that the dose of nitrogen fertilizer affected the number of pods and the weight 
of 1000 seeds (Table 4). A nitrogen fertilizer dose of 50 kg ha-1 significantly differs from a nitrogen 
fertilizer dose of 0 kg ha-1 regarding the number of pods and weight of 1000 peanut seeds. The  
optimum nitrogen fertilizer dose of 78.75 kg ha-1 produced the highest number of peanut pods, 
namely 49 pods, with a coefficient of 0.97 (Figure 1). The results of this research align with research 
by El-sherbeny et al. (2023) that the highest number of pods were produced in the treatment of urea 
and animal manure fertilizer. Peanut pod formation requires high nitrogen levels to form new cells 
composed of photosynthate. Forming peanut pods requires more nitrogen because it forms new cells 
composed of photosynthate. The ability of peanut plants to accumulate photosynthate when filling 
the pods is a factor that influences the formation of complete pods (Arsovski et al., 2018; Yavari et 
al., 2021). Nitrogen nutrients given during the pod-filling phase at the right dose have better pod 
yields with seeds inside. The ability of peanut plants to accumulate photosynthate when filling the 
pods is a factor that influences the formation of complete pods. Nitrogen is the structural component 
of protein and amino acids used by peanut plants for seed formation (Ahanger et al., 2021). Urea 
contains high nitrogen, namely 46%, to increase growth. However, the source of rhizobium did not 
affect the number of pods and the weight of 1000 seeds. Rhizobium bacteria use organic matter 
available in the soil for growth and metabolism so that the rhizobium can survive and increase its 
population (Santachiara et al., 2019). 

CONCLUSION 
The combination of 100 kg ha-1 of nitrogen with a source of used peanut rhizobium showed the 

highest number of plant leaves. The optimum nitrogen fertilizer dose is 44 kg ha-1  for nodule growth. 
The 50 kg ha-1 nitrogen dose produced the highest pods and seed weight. Nitrogen fertilizer at the 
correct dose can increase peanuts’ growth, nodulation, and yield in acid soil. However, a dose that 
is too high may cause antagonism with the nodulation process and reduced yield.
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