Advanced Estimation of Brain Age Using Pre-trained 2D Convolutional Neural Networks on a Public Dataset

Mohannad Al-kubaisi, Ali Saadoon Ahmed, Shokhan M. Al-Barzinji, Arshad M. Khaleel

Abstract


This work introduces a brand-new approach to be employed for correctly assessing healthy person’s brain aging, masking what constitutes the most serious challenge in the fight against age-related cognitive decline. An approach is serviced by 2D CNNs, a simpler technology to state-of-the-art 3D model, to yield close to accurate forecast. Our algorithm improves telling in two respects. By virtue of this, we will utilize well-known ImageNet-pre-trained classifiers to suggest initial brain age predictions. This process sets the tone of the core of our business model in terms of dependability and reliability. Next, we improve the networks’ performance through progressively expanding their capacity via fine-tuning on pre-segmentation tasks using the neuroimaging datasets which are openly available. This stage increases the predictive accuracy in addition to ensuring that there is transparency and flexibility because it utilizes open datasets. Our research's strength is that it encompasses all techniques and fields necessary for brain age estimation and adopts justifiable evaluation metrics. As a result, this conduct adds to the literature. Our study not only points out deficiencies in private datasets but reels out the validity of our approach by using the public data instead to give the results another direction of accessibility and reproducibility.

Keywords


2D Convolutional Neural Networks; Brain Age Estimation; Neuroimaging; Public Datasets; Image Segmentation.

Full Text:

PDF

References


A. Gurunathan and B. Krishnan, “Detection and diagnosis of brain tumors using deep learning convolutional neural networks,” Int. J. Imaging Syst. Technol., vol. 31, no. 3, pp. 1174–1184, Sep. 2021, doi: 10.1002/ima.22532.

Santhosh Kumar H S and K. Karibasappa, “An approach for brain tumour detection based on dual-tree complex Gabor wavelet transform and neural network using Hadoop big data analysis,” Multimed Tools Appl., vol. 81, no. 27, pp. 39251–39274, Nov. 2022, doi: 10.1007/s11042-022-13016-6.

P. Kiran and B. D. Parameshachari, “Resource Optimized Selective Image Encryption of Medical Images Using Multiple Chaotic Systems,” Microprocess Microsyst., vol. 91, p. 104546, Jun. 2022, doi: 10.1016/j.micpro.2022.104546.

C. Shan, Q. Li, and C.-H. Wang, “Brain Tumor Segmentation using Automatic 3D Multi-channel Feature Selection Convolutional Neural Network,” Journal of Imaging Science and Technology, vol. 66, no. 6, pp. 060502-1-060502–9, Nov. 2022.

A. Ilhan, B. Sekeroglu, and R. Abiyev, “Brain tumor segmentation in MRI images using nonparametric localization and enhancement methods with U-net,” Int. J. Comput. Assist. Radiol. Surg., vol. 17, no. 3, pp. 589–600, Mar. 2022, doi: 10.1007/s11548-022-02566-7.

M. Anatürk et al., “Prediction of brain age and cognitive age: Quantifying brain and cognitive maintenance in aging,” Hum. Brain Mapp., vol. 42, no. 6, pp. 1626–1640, Apr. 2021, doi: 10.1002/hbm.25316.

J. Gómez-Ramírez, M. A. Fernández-Blázquez, and J. J. González-Rosa, “Prediction of Chronological Age in Healthy Elderly Subjects with Machine Learning from MRI Brain Segmentation and Cortical Parcellation,” Brain. Sci., vol. 12, no. 5, p. 579, Apr. 2022, doi: 10.3390/brainsci12050579.

Y. Nam et al., “Estimating age-related changes in in vivo cerebral magnetic resonance angiography using convolutional neural network,” Neurobiol. Aging., vol. 87, pp. 125–131, Mar. 2020, doi: 10.1016/j.neurobiolaging.2019.12.008.

N. Weiskopf, L. J. Edwards, G. Helms, S. Mohammadi, and E. Kirilina, “Quantitative magnetic resonance imaging of brain anatomy and in vivo histology,” Nature Reviews Physics, vol. 3, no. 8, pp. 570–588, Jun. 2021, doi: 10.1038/s42254-021-00326-1.

M. A. Chappell et al., “Partial volume correction in arterial spin labeling perfusion MRI: A method to disentangle anatomy from physiology or an analysis step too far?,” Neuroimage, vol. 238, p. 118236, Sep. 2021, doi: 10.1016/j.neuroimage.2021.118236.

J. A. Taylor, P. L. Greenhaff, D. B. Bartlett, T. A. Jackson, N. A. Duggal, and J. M. Lord, “Multisystem physiological perspective of human frailty and its modulation by physical activity,” Physiol. Rev., vol. 103, no. 2, pp. 1137–1191, Apr. 2023, doi: 10.1152/physrev.00037.2021.

R. Najjar, “Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging,” Diagnostics, vol. 13, no. 17, p. 2760, Aug. 2023, doi: 10.3390/diagnostics13172760.

S. Dixit, A. Kumar, and K. Srinivasan, “A Current Review of Machine Learning and Deep Learning Models in Oral Cancer Diagnosis: Recent Technologies, Open Challenges, and Future Research Directions,” Diagnostics, vol. 13, no. 7, p. 1353, Apr. 2023, doi: 10.3390/diagnostics13071353.

W. Yin, L. Li, and F.-X. Wu, “Deep learning for brain disorder diagnosis based on fMRI images,” Neurocomputing, vol. 469, pp. 332–345, Jan. 2022, doi: 10.1016/j.neucom.2020.05.113.

M. Tanveer et al., “Deep learning for brain age estimation: A systematic review,” Information Fusion, vol. 96, pp. 130–143, Aug. 2023, doi: 10.1016/j.inffus.2023.03.007.

D. A. Wood et al., “Accurate brain‐age models for routine clinical MRI examinations,” Neuroimage, vol. 249, p. 118871, Apr. 2022, doi: 10.1016/j.neuroimage.2022.118871.

K.-M. Bintsi, V. Baltatzis, A. Hammers, and D. Rueckert, “Voxel-Level Importance Maps for Interpretable Brain Age Estimation,” Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data: 4th International Workshop, iMIMIC 2021, and 1st International Workshop, TDA4MedicalData 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings 4, pp. 65-74, 2021, doi: 10.1007/978-3-030-87444-5_7.

Y. Zhang, H. Cai, L. Nie, P. Xu, S. Zhao, and C. Guan, “An end-to-end 3D convolutional neural network for decoding attentive mental state,” Neural Networks, vol. 144, pp. 129–137, Dec. 2021, doi: 10.1016/j.neunet.2021.08.019.

L. Liao et al., “Multi-Branch Deformable Convolutional Neural Network with Label Distribution Learning for Fetal Brain Age Prediction,” in 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 424–427, Apr. 2020, doi: 10.1109/ISBI45749.2020.9098553.

J. H. Cole, R. E. Marioni, S. E. Harris, and I. J. Deary, “Brain age and other bodily ‘ages’: implications for neuropsychiatry,” Mol Psychiatry, vol. 24, no. 2, pp. 266–281, Feb. 2019, doi: 10.1038/s41380-018-0098-1.

J. H. Cole and K. Franke, “Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers,” Trends Neurosci., vol. 40, no. 12, pp. 681–690, Dec. 2017, doi: 10.1016/j.tins.2017.10.001.

F. Siciliano, M. S. Bucarelli, G. Tolomei, and F. Silvestri, “NEWRON: A New Generalization of the Artificial Neuron to Enhance the Interpretability of Neural Networks,” in 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1–17, Jul. 2022, doi: 10.1109/IJCNN55064.2022.9892367.

M. Salvi, U. R. Acharya, F. Molinari, and K. M. Meiburger, “The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis,” Comput. Biol. Med., vol. 128, p. 104129, Jan. 2021, doi: 10.1016/j.compbiomed.2020.104129.

S. Kollmannsberger, D. D’Angella, M. Jokeit, and L. Herrmann, Deep Learning in Computational Mechanics, vol. 977. Cham: Springer International Publishing, 2021, doi: 10.1007/978-3-030-76587-3.

J. Dombi and T. Jónás, “Generalizing the sigmoid function using continuous-valued logic,” Fuzzy Sets Syst., vol. 449, pp. 79–99, Nov. 2022, doi: 10.1016/j.fss.2022.02.010.

J. X. Leon-Medina, M. Anaya, N. Parés, D. A. Tibaduiza, and F. Pozo, “Structural Damage Classification in a Jacket-Type Wind-Turbine Foundation Using Principal Component Analysis and Extreme Gradient Boosting,” Sensors, vol. 21, no. 8, p. 2748, Apr. 2021, doi: 10.3390/s21082748.

T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, and G. Hinton, “Backpropagation and the brain,” Nat. Rev. Neurosci., vol. 21, no. 6, pp. 335–346, Jun. 2020, doi: 10.1038/s41583-020-0277-3.

H. Chen et al., “Pre-Trained Image Processing Transformer,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12294–12305, Jun. 2021, doi: 10.1109/CVPR46437.2021.01212.

D. Schapiro et al., “MCMICRO: a scalable, modular image-processing pipeline for multiplexed tissue imaging,” Nat. Methods, vol. 19, no. 3, pp. 311–315, Mar. 2022, doi: 10.1038/s41592-021-01308-y.

B. F. Azevedo, A. M. A. C. Rocha, and A. I. Pereira, “Hybrid approaches to optimization and machine learning methods: a systematic literature review,” Mach. Learn., Jan. 2024, doi: 10.1007/s10994-023-06467-x.

R. Pastrana, P. O. Ohlbrock, T. Oberbichler, P. D’Acunto, and S. Parascho, “Constrained Form-Finding of Tension–Compression Structures using Automatic Differentiation,” Computer-Aided Design, vol. 155, p. 103435, Feb. 2023, doi: 10.1016/j.cad.2022.103435.

Y. Xiong and R. Zuo, “Robust Feature Extraction for Geochemical Anomaly Recognition Using a Stacked Convolutional Denoising Autoencoder,” Math. Geosci., vol. 54, no. 3, pp. 623–644, Apr. 2022, doi: 10.1007/s11004-021-09935-z.

A. Pillai, A. Nizam, M. Joshee, A. Pinto, and S. Chavan, “Breast Cancer Detection in Mammograms Using Deep Learning,” pp. 121–127, 2022, doi: 10.1007/978-981-16-2008-9_11.

M. L. Smith, L. N. Smith, and M. F. Hansen, “The quiet revolution in machine vision - a state-of-the-art survey paper, including historical review, perspectives, and future directions,” Comput. Ind., vol. 130, p. 103472, Sep. 2021, doi: 10.1016/j.compind.2021.103472.

P. Qi, F. Wang, Y. Huang, and X. Yang, “Integrating functional data analysis with case-based reasoning for hypertension prognosis and diagnosis based on real-world electronic health records,” BMC Med. Inform. Decis. Mak., vol. 22, no. 1, p. 149, Dec. 2022, doi: 10.1186/s12911-022-01894-7.

V. Buhrmester, D. Münch, and M. Arens, “Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey,” Mach. Learn. Knowl. Extr., vol. 3, no. 4, pp. 966–989, Dec. 2021, doi: 10.3390/make3040048.

A. Saibene, M. Assale, and M. Giltri, “Expert systems: Definitions, advantages and issues in medical field applications,” Expert Syst. Appl., vol. 177, p. 114900, Sep. 2021, doi: 10.1016/j.eswa.2021.114900.

A. Alharan, N. Ali, and Z. Algelal, “An Adaptive Neuro-Fuzzy Inference System And Principal Component Analysis: A Hybridized Method For Viral Hepatitis Diagnosis System,” Apr. 2022, doi: 10.24412/2520-6990-2022-19142-4-10.

C. W. McMonnies, “Why the symptoms and objective signs of dry eye disease may not correlate,” J. Optom., vol. 14, no. 1, pp. 3–10, Jan. 2021, doi: 10.1016/j.optom.2020.10.002.

D. A. Dharmawan, “Assessing fairness in performance evaluation of publicly available retinal blood vessel segmentation algorithms,” J. Med. Eng. Technol., vol. 45, no. 5, pp. 351–360, Jul. 2021, doi: 10.1080/03091902.2021.1906342.

K. Khalil, O. Eldash, A. Kumar, and M. Bayoumi, “Designing Novel AAD Pooling in Hardware for a Convolutional Neural Network Accelerator,” IEEE Trans Very Large Scale Integr VLSI Syst., vol. 30, no. 3, pp. 303–314, Mar. 2022, doi: 10.1109/TVLSI.2021.3139904.

A. A. Abdulsahib, M. A. Mahmoud, M. A. Mohammed, H. H. Rasheed, S. A. Mostafa, and M. S. Maashi, “Comprehensive review of retinal blood vessel segmentation and classification techniques: intelligent solutions for green computing in medical images, current challenges, open issues, and knowledge gaps in fundus medical images,” Network Modeling Analysis in Health Informatics and Bioinformatics, vol. 10, no. 1, p. 20, Dec. 2021, doi: 10.1007/s13721-021-00294-7.

A. G. Figueroa et al., “Levodopa Positively Affects Neovascular Age-Related Macular Degeneration,” Am. J. Med., vol. 134, no. 1, pp. 122-128.e3, Jan. 2021, doi: 10.1016/j.amjmed.2020.05.038.

P. Vivek, S. Goel, R. Nijhawan, and S. Gupta, “CNN Models and Machine Learning Classifiers for Analysis of Goiter Disease,” in 2022 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), pp. 1–6, Feb. 2022, doi: 10.1109/SCEECS54111.2022.9740737.

F. lahmood Hameed and O. Dakkak, “Brain Tumor Detection and Classification Using Convolutional Neural Network (CNN),” in 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), pp. 1–7, Jun. 2022, doi: 10.1109/HORA55278.2022.9800032.

A. Samanta, A. Saha, S. C. Satapathy, S. L. Fernandes, and Y.-D. Zhang, “Automated detection of diabetic retinopathy using convolutional neural networks on a small dataset,” Pattern Recognit. Lett., vol. 135, pp. 293–298, Jul. 2020, doi: 10.1016/j.patrec.2020.04.026.

A. Mumuni and F. Mumuni, “CNN Architectures for Geometric Transformation-Invariant Feature Representation in Computer Vision: A Review,” SN Comput. Sci., vol. 2, no. 5, p. 340, Sep. 2021, doi: 10.1007/s42979-021-00735-0.

M. Y. Demirci, N. Beşli, and A. Gümüşçü, “Efficient deep feature extraction and classification for identifying defective photovoltaic module cells in Electroluminescence images,” Expert Syst. Appl., vol. 175, p. 114810, Aug. 2021, doi: 10.1016/j.eswa.2021.114810.

T. Rezaie et al., “Adult-Onset Primary Open-Angle Glaucoma Caused by Mutations in Optineurin,” Science (1979), vol. 295, no. 5557, pp. 1077–1079, Feb. 2002, doi: 10.1126/science.1066901.

G. Boraiah and A. Chhabra, “Conventional and Advanced Imaging Evaluation of Spine,” in Multidisciplinary Spine Care, 73–107, 2022, doi: 10.1007/978-3-031-04990-3_4.

C. Zhang et al., “Acceleration of three-dimensional diffusion magnetic resonance imaging using a kernel low-rank compressed sensing method,” Neuroimage, vol. 210, p. 116584, Apr. 2020, doi: 10.1016/j.neuroimage.2020.116584.

C. G. Schwarz et al., “Changing the face of neuroimaging research: Comparing a new MRI de-facing technique with popular alternatives,” Neuroimage, vol. 231, p. 117845, May 2021, doi: 10.1016/j.neuroimage.2021.117845.

M. Heinsch et al., “Supporting friends and family of adults with a primary brain tumour: A systematic review,” Health Soc Care Community, vol. 30, no. 3, pp. 869–887, May 2022, doi: 10.1111/hsc.13586.

Z. Huang, Y. Zhao, Y. Liu, and G. Song, “AMF-Net: An adaptive multisequence fusing neural network for multi-modality brain tumor diagnosis,” Biomed. Signal Process Control, vol. 72, p. 103359, Feb. 2022, doi: 10.1016/j.bspc.2021.103359.

B. M. Pacheco, G. de S. e Cassia, and D. Silva, “Towards fully automated deep-learning-based brain tumor segmentation: Is brain extraction still necessary?,” Biomed. Signal Process Control, vol. 82, p. 104514, Apr. 2023, doi: 10.1016/j.bspc.2022.104514.

R. Vankdothu, M. A. Hameed, and H. Fatima, “A Brain Tumor Identification and Classification Using Deep Learning based on CNN-LSTM Method,” Computers and Electrical Engineering, vol. 101, p. 107960, Jul. 2022, doi: 10.1016/j.compeleceng.2022.107960.

S. K. Rajeev, M. Pallikonda Rajasekaran, G. Vishnuvarthanan, and T. Arunprasath, “A biologically-inspired hybrid deep learning approach for brain tumor classification from magnetic resonance imaging using improved gabor wavelet transform and Elmann-BiLSTM network,” Biomed. Signal Process Control, vol. 78, p. 103949, Sep. 2022, doi: 10.1016/j.bspc.2022.103949.

R. Sindhiya Devi, B. Perumal, and M. Pallikonda Rajasekaran, “A hybrid deep learning based brain tumor classification and segmentation by stationary wavelet packet transform and adaptive kernel fuzzy c means clustering,” Advances in Engineering Software, vol. 170, p. 103146, Aug. 2022, doi: 10.1016/j.advengsoft.2022.103146.

X. Lei, X. Yu, J. Chi, Y. Wang, J. Zhang, and C. Wu, “Brain tumor segmentation in MR images using a sparse constrained level set algorithm,” Expert Syst. Appl., vol. 168, p. 114262, Apr. 2021, doi: 10.1016/j.eswa.2020.114262.

K. V. S. Et. al., “Study and Analysis of Various Automatic Brain Tumour Segmentation andClassification: A Challenging Overview,” Turkish Journal of Computer and Mathematics Education (TURCOMAT), vol. 12, no. 10, pp. 6106–6115, May 2021, doi: 10.17762/turcomat.v12i10.5447.

V. D. Ugale, S. S. Pawar, and S. Pawar, “Brain Tumour Detection using Image Processing,” in 2022 IEEE 11th International Conference on Communication Systems and Network Technologies (CSNT), pp. 667–672, Apr. 2022, doi: 10.1109/CSNT54456.2022.9787643.

N. M. Ghadi and N. H. Salman, “Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review,” Journal of Engineering, vol. 28, no. 12, pp. 93–112, Dec. 2022, doi: 10.31026/j.eng.2022.12.07.

H. Mzoughi, I. Njeh, M. Ben Slima, A. Ben Hamida, C. Mhiri, and K. Ben Mahfoudh, “Towards a computer aided diagnosis (CAD) for brain MRI glioblastomas tumor exploration based on a deep convolutional neuronal networks (D-CNN) architectures,” Multimed Tools Appl., vol. 80, no. 1, pp. 899–919, Jan. 2021, doi: 10.1007/s11042-020-09786-6.

F. Gao et al., “AD-NET: Age-adjust neural network for improved MCI to AD conversion prediction,” Neuroimage Clin., vol. 27, p. 102290, 2020, doi: 10.1016/j.nicl.2020.102290.




DOI: https://doi.org/10.18196/jrc.v5i4.22006

Refbacks



Copyright (c) 2024 Mohannad Al-kubaisi, Ali Saadoon Ahmed, Shokhan M. Al-Barzinji, Arshad M. Khaleel

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik