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Abstract 

Depending on persuasive statistics, the increasing prevalence of diabetes worldwide is a huge 

challenge for individuals, families, and nations. According to International Diabetes Federation 

(IDF) projections, the number of adults with diabetes is expected to rise by an astounding 46% by 

2045, to reach 783 million, or one in eight. In response to this growing concern, this research 

explores the implementation of the Naive Bayes algorithm for predicting diabetes, employing 

comprehensive data cleansing and randomization techniques. A systematic evaluation of the model's 

performance is conducted using several training and testing split ratios (65:35, 75:25, 85:15). The 

outcome showed that the model performed best at the 65:35 split ratio, with accuracy reaching its 

maximum of 88.16%, precision 0.883, recall 0.881, and f1-score 0.882. 

INTRODUCTION 

The escalating global impact of diabetes poses a significant challenge for individuals, families, and nations, as 

evidenced by compelling statistics. IDF Diabetes Atlas (2021) reports that 10.5% of adults between the ages of 

20 and 79 have diabetes, almost half of them being ignorant of their illness (Al-Mohaithef et al., 2022). 

Projections from the International Diabetes Federation (IDF) suggest a staggering 46% increase by 2045, 

resulting in 783 million adults, or 1 in 8, grappling with diabetes (Arokiasamy et al., 2021a). Type 2 diabetes 

accounts for over 90% of cases, influenced by a complex interplay of socio-economic, demographic, 

environmental, and genetic factors (Arokiasamy et al., 2021b). Factors such as urbanization, an aging 

population, declining physical activity, and rising overweight and obesity rates contribute significantly to the 

rise in type 2 diabetes(Patil & Gothankar, 2019). 

Nevertheless, proactive measures can mitigate the impact of diabetes, emphasizing preventive actions for type 

2 diabetes and early diagnosis and care for all forms of the condition (Association, 2019). These interventions 

are crucial to helping individuals manage the condition, potentially avoiding or delaying complications. While 

diabetes cannot be completely cured, it can be effectively managed (Khursheed et al., 2019). Insulin is used to 

treat type 1 diabetes. It is available in different forms, including rapid-acting, short-acting, intermediate-acting, 

and long-acting insulin (Janež et al., 2020). The differences in the types of insulin are in how quickly they take 

effect and how long they last. A balanced diet, oral medicines, and regular exercise can all help control type 2 

diabetes (Magkos et al., 2020). "Insulin-Dependent Diabetes Mellitus" (IDDM), another name for Type 1 

Diabetes Mellitus, is characterised by insufficient insulin synthesis by the pancreas (Esposito et al., 2019). 

Because their pancreas produces less insulin than normal, people with Type 1 diabetes need to take exogenous 

insulin injections to make up for this (Charley et al., 2023) . The hallmark of type 2 diabetes mellitus is the 

body's resistance to insulin due to abnormal responses of body cells to the hormone. The body may eventually 

run out of insulin as a result of this resistance. According to Sousa et al. (2021) it is also known as "Non-
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Insulin-Dependent Diabetes Mellitus" (NIDDM) (Sousa et al., 2021). Sedentary lifestyles are a common cause 

of this kind of diabetes. 

However, current methods for detecting diabetes involve the use of laboratory tests such as blood glucose and 

oral glucose tolerance (Kuo et al., 2021), the process of which is quite time-consuming. The urgent nature of 

this surge calls for innovative approaches, especially in early detection and prevention strategies. Identifying 

high-risk individuals has become crucial to curbing the diabetes epidemic.  

Therefore, machine learning is considered an important feature of artificial intelligence that supports the 

development of computer systems with the ability to acquire knowledge from past experience quickly (Raschka 

et al., 2020). This study utilizes machine learning techniques, focusing on Naive Bayes classification to predict 

diabetes susceptibility in random individuals, with the aim of improving early detection and intervention. 

In practical terms, Naive Bayes works by evaluating the probability of a particular instance to fall into a 

particular class based on the values of its features (Maswadi et al., 2021). The algorithm is "naive" in that it 

simplifies the calculations by assuming independence among the features (Chen et al., 2020), although this 

assumption does not always hold in real-world scenarios (Wickramasinghe & Kalutarage, 2021). Despite its 

simplicity and the assumptions made, Naive Bayes often performs well in various classification tasks, 

especially when dealing with large datasets (Abbas et al., 2019; Blanquero et al., 2021). 

The essence of Naive Bayes lies in its ability to make predictions based on probability distributions, making it 

a powerful tool in the field of machine learning and classification (Hassan et al., 2023). Its simplicity, 

efficiency, and effectiveness make it a popular choice for various applications, in this case specifically medical 

diagnosis. 

In the context of this study, it's important to note that the research leverages secondary data directly collected 

from patients at Diabetes Sylhet Hospital in Sylhet, Bangladesh. This data collection involved the use of 

questionnaires that were ethically approved by doctors, ensuring the ethical and methodological integrity of the 

research process. This utilization of real-world patient data adds a practical dimension to the application of 

Naive Bayes in medical diagnosis, offering insights into its performance in a specific healthcare context. The 

incorporation of such data enhances the relevance and applicability of the findings to real-world scenarios, 

contributing to the robustness of the study's conclusions. 

RESEARCH METHOD 

This study used secondary data collected using questionnaires directly from patients of Diabetes Sylhet 

Hospital in Sylhet, Bangladesh and approved by doctors. This study has the following methods: 

Data Cleansing 

Data cleaning is an important step in data preparation that involves examining the data set to identify and 

address missing values or inconsistent data. As explained from the UCI dataset, out of 520 data consisting of 

17 attributes and 1 class, there were missing values. So this important process ensures the reliability and 

accuracy of the data by correcting discrepancies and improving its overall quality. It involves thorough 

verification to detect anomalies or irregularities that could jeopardize the integrity of the dataset. 

Data Randomization 

Data randomization is a crucial process involving the randomization of data to obtain a representative sample 

that accurately reflects the population. This method ensures that the selected sample is not biased and provides 

a fair and unbiased representation of the entire dataset. The goal is to eliminate any potential patterns or order 

in the data, promoting objectivity in subsequent analyses. The process of data randomization involves shuffling 

or rearranging the data points in a way that each observation has an equal chance of being selected. By doing 

so, the resulting sample is more likely to capture the diverse characteristics present in the overall population. 
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Naive Bayes Classification 

The Naive Bayes algorithm is a classification technique that operates on the principles of probabilistic 

classification. Naive Bayes is a straightforward probabilistic classification method that calculates a set of 

probabilities by summing frequencies and combinations derived from a given data set. The theorem predicts 

future probabilities based on past experience and combined with the Naive assumption, which assumes 

independence between attributes. It is assumed in Naive Bayes classification that a feature's existence or 

absence in a class has no bearing on the presence of other features in that class. In the exploration of the dataset, 

different proportions for training and testing datasets namely 65:35, 75:25, and 85:15. These ratios represent 

the division of the dataset into training and testing subsets, with the first number indicating the percentage 

allocated for training and the second for testing. The rationale behind experimenting with different splits lies 

in finding an optimal balance between providing the algorithm with sufficient data to learn patterns and 

ensuring an adequate evaluation on unseen data. Previous works have often employed varying proportions to 

strike this balance, and comparing the results across different splits allows for a nuanced understanding of the 

algorithm's behavior under diverse conditions. It enables researchers to evaluate the model's ability to 

generalize beyond the training set and provides insights into potential overfitting or underfitting issues. 

Additionally, by scrutinizing the impact of these proportions on the Naive Bayes algorithm's performance, 

researchers can contribute to the broader discourse on best practices in dataset partitioning for classification 

tasks. The study further extends its investigation by calculating prior values from the training data and 

determining probability values for each variable, emphasizing a comprehensive evaluation of the algorithm's 

predictive capabilities under different training-test scenarios. Following this, the study delves into calculating 

the prior values of the training data and determining the probability values for each variable concerning its 

respective class through the application of the conditional probability formula. 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴).𝑃(𝐴)

𝑃(𝐵)
  (1) 

P(A∣B) = is the probability of class A given the features B,  P(B∣A) = is the probability of observing the features 

B given class A, P(A) = is the prior probability of class A, and P(B) = is the probability of observing the features 

B. 

Classification Model Evaluation 

Classification model evaluation is the process of assessing the performance and accuracy of a developed 

classification model. The primary goal is to understand how well the model classifies instances into different 

categories or classes. The evaluation is typically quantified using various metrics, and one common metric is 

accuracy, precision, recall, and f1-score. Accuracy is a measure that signifies the overall correctness of the 

model by considering both true positives and true negatives in relation to all instances. Precision is a metric 

focused on the accuracy of positive predictions, emphasizing the ratio of true positives to the total predicted 

positives. The ratio of true positives to all actual positives is called recall, or sensitivity, and it measures how 

well the model can detect positive occurrences. The f1-score is a balanced metric that takes into account both 

false positives and false negatives. It is calculated as the harmonic mean of precision and recall. Conversely, 

specificity focuses on how well the model detects negative examples; this is measured by the proportion of real 

negatives to all actual negatives. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2.𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
    (5) 

In these formulas: TP = True Positives (correctly predicted positive instances), TN =  True Negatives (correctly 

predicted negative instances), FP = False Positives (incorrectly predicted as positive instances), FN = False 

Negatives (incorrectly predicted as negative instances). 

RESULTS AND DISCUSSION 

This test aims to find the accuracy value and which performance is better between the division of testing data 

and training data using Naive Bayes in classifying data into predetermined classes. In this study, the data used 

amounted to 520 data, with 16 attributes namely age, gender, polyuria, polydipsia, sudden weight loss, 

weakness, polyphagia, genital thrush, blurring of vision, itching, irritability, delayed healing, partial paresis, 

muscle stiffness, alopecia, obesity, and 1 class. 

Table 1. Number of data training and  data testing 

No 
Split of data training 

and testing  

Data 

training 

Data 

testing 

Total 

data 

1. 65:35 338 182 520 

2. 75:25 390 130 520 

3. 85:15 442 78 520 

 

Referring to table 1 which is a representation of the amount of training and testing data division that will be 

carried out in this study. 

Performance Matrix 

Confusion matrix 

Confusion matrix belongs to the category of performance matrix in the context of machine learning model 

evaluation. Confusion matrix provides a detailed description of the model's performance by comparing the 

model's prediction results with the actual value of the test data. the following are the results of the confusion 

matrix in this study from data training and testing 65:35, 75:25, 85:15 
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Figure 1. Confusion matrix data training and data testing 65:35 

Based on the confusion matrix plot in figure 1, outcomes derived from the confusion matrix analysis reveal a 

detailed breakdown of the model's performance, showcasing 184 instances correctly identified as True Positives 

(TP), demonstrating the model's proficiency in accurately predicting positive cases. Simultaneously, the model 

achieved 114 instances of True Negatives (TN), correctly identifying negative cases. However, it also incurred 

16 False Positives (FP), instances where the model inaccurately classified negative cases as positive, signifying 

the occurrence of Type I errors. Furthermore, the model recorded 24 instances of False Negatives (FN), 

representing situations where positive cases were erroneously predicted as negative, indicating the occurrence 

of Type II errors. 

 

Figure 2. Confusion matrix data training and data testing 75:25 
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Based on figure 2's confusion matrix plot, confusion matrix yields compelling insights into the model's 

performance, showcasing 214 instances accurately identified as True Positives (TP), affirming the model's 

proficiency in correctly predicting positive cases. Concurrently, the model attains 126 instances of True 

Negatives (TN), effectively identifying negative cases. However, it also incurs 26 False Positives (FP), 

instances where the model erroneously classifies negative cases as positive, indicative of Type I errors. 

Additionally, the model registers 24 instances of False Negatives (FN), representing situations where positive 

cases are inaccurately predicted as negative, highlighting the occurrence of Type II errors. 

 

Figure 3. Confusion matrix data training and data testing 85:15 

Based on confusion matrix plot in figure 3, examination of the confusion matrix reveals noteworthy metrics for 

the model’s performance 237 instances classified as True Positives (TP), signifying accurate identification of 

positive cases. Additionally, there are 150 instances of True Negatives (TN), reflecting the model’s proficiency 

in correctly recognizing negative cases. On the other hand, the model incurs 23 False Positives (FP), 

representing instances where it incorrectly identifies negative cases as positive. Furthermore, there are 32 

instances of False Negatives (FN), indicating situations where positive cases are inaccurately predicted as 

negative. 

Accuracy 

Based on the results of the study, the accuracy results of each division of training and testing data can be seen 

in the table 2 

Table 2. Accuracy of data training and data testing 

No 
split of data training 

and testing  
Accuracy 

1. 65:35 88.16% 

2. 75:25 87.17% 

3. 85:15 87.55% 

 

From experimental results shown in table 2, it is known that the best accuracy results are obtained from the 

division of training and testing data of 65:35 with an accuracy value of 88.16%. The selection of a 65:35 

training-to-testing data split, resulting in an accuracy of 88.16%, signifies a nuanced balance in the model 

development process. Allocating 65% of the data for training ensures a robust learning phase, enabling the 

model to discern intricate patterns and relationships within the dataset. This substantial training set minimizes 
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the risk of overfitting, where the model might excessively tailor itself to the training data, including noise. 

Simultaneously, the 35% dedicated to testing serves as a comprehensive evaluation, challenging the model with 

a diverse range of instances to gauge its generalization capability effectively. The success of this split ratio may 

also stem from its alignment with the dataset's distribution and complexity, ensuring that both training and 

testing subsets are representative. The achieved high accuracy of 88.16% reflects the model's proficiency in 

capturing underlying patterns, providing a reliable indication of its performance on unseen data. It's important 

to note that the choice of an optimal split ratio often involves experimentation, considering the specific 

characteristics of the dataset for effective model training and evaluation. 

Prescision 

The insights into precision metrics are illuminated through table 3, offering a detailed breakdown and analysis 

of the obtained results. 

Table 3. Prescision of data training and  data testing 

No 
Split of data training 

and testing  
Prescision 

1. 65:35 0.883 

2. 75:25 0.871 

3. 85:15 0.877 

 

From table 3 information, experimental findings underscore the optimal precision achieved when employing a 

data split of 65% for training and 35% for testing. In this configuration, the model demonstrates a superior 

ability to precisely identify relevant instances within the dataset, as evidenced by a precision value of 0.883. 

This indicates that, within the training set, the model excels in minimizing both false positives and false 

negatives, ensuring a higher proportion of positively identified instances are indeed relevant. The 65:35 division 

strikes a balance that allows the model to discern patterns and features effectively, leading to heightened 

precision in its predictions. This nuanced approach to data partitioning evidently contributes to the superior 

performance in precision metrics compared to other tested ratios. 

Recall 

Derived from the study outcomes, table 4 illustrates the recall outcomes for each split of training and testing 

data. 

Table 4. Recall of data training and  data testing 

No 
Split of data training 

and testing  
Recall 

1. 65:35 0.881 

2. 75:25 0.871 

3. 85:15 0.875 

 

From experimental results shown in table 4, the optimal recall performance, as indicated by the experimental 

results, is achieved through the 65:35 split of training and testing data, resulting in a recall value of 0.881. This 

particular split ratio likely provides an effective balance between the amount of data used for training and 

testing, allowing the model to generalize well to new, unseen instances. The 65% allocated for training 

potentially ensures that the model captures the underlying patterns in the data, while the 35% reserved for 

testing ensures a robust evaluation on unseen samples. The higher recall value indicates that the model's 

improved capacity to accurately detect instances of interest may be attributed in part to this balancing. 
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F1-score 

The comparative F1 score outcomes between the training and testing datasets are presented in table 5. 

Table 5. F1-score of data training and  data testing 

No 
Split of data 

training and testing  
F1-score 

1. 65:35 0.882 

2. 75:25 0.871 

3. 85:15 0.876 

 

From table 5 information, the optimal performance, as indicated by the highest F1-score of 0.882, is achieved 

with a training and testing data split of 65:35. This result suggests that a larger portion of the dataset dedicated 

to training, specifically 65%, coupled with 35% for testing, yields the most favorable balance between precision 

and recall. A more extensive training dataset allows the model to learn the underlying patterns and intricacies 

of the data, enhancing its ability to generalize and make accurate predictions on unseen instances during testing. 

The 65:35 division strikes a pragmatic balance, preventing overfitting by providing sufficient diverse instances 

for testing while ensuring a robust model through comprehensive training. 

CONCLUSION 

In conclusion, after a thorough examination of diverse performance metrics, encompassing accuracy, precision, 

recall, and F1 score, the data split of 65:35 emerges as the clear frontrunner, outshining alternatives like 75:25 

and 85:15 across all parameters. This supremacy is underscored by the remarkable results obtained from the 

65:35 configuration, boasting an accuracy of 88.16%, precision at 0.883, recall registering 0.881, and a 

commendable F1 score of 0.882. The robustness of the 65:35 split lies in its adept balance between training 

and testing instances. Allocating 65% of the data to training enables the model to glean insights from a rich and 

diverse dataset, facilitating a nuanced understanding of underlying patterns. Simultaneously, the 35% assigned 

to testing ensures stringent validation, preventing overfitting and fortifying the model's generalizability. The 

cumulative effect of this balance maximizes overall model performance, reinforcing that the 65:35 data split is 

the most effective configuration for achieving optimal results in this experimental context. 
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