Uji Performa Waterjet Thruster Produk 3D Printing Material Super Tought Polylactic Acid Terhadap Gaya Dorong
Abstract
In the world of transportation, there are many things that must be considered, ranging from safety to efficiency. Propulsion system planning is very important, this is because the system is a thrust generator that will determine the performance of the ship. The thrust generated must be able to overcome the resistance or friction of the ship with water. In recent times, many studies have been conducted to improve the performance and efficiency of the waterjet thruster. In this research, the performance of the waterjet thruster will be tested with variations in the number of inlet blades and the number of turbo outlet blades. The levels used are 8 blades and 15 blades. The manufacturing process on waterjet thruster components such as inlet, impeller, and turbo outlet uses Fused Deposition Modeling (FDM) technology to obtain high dimensional accuracy. From the research conducted, it can be concluded that the number of blades at the turbo inlet and outlet has a major effect on the thrust generated. The turbo outlet has a greater role than the inlet in influencing the thrust force. From the research conducted by Nori and this study, it can be concluded that the turbo outlet with 8 blades produces the highest thrust force compared to 6 blades and 15 blades.
Keywords
Full Text:
PDFReferences
Andilolo, Y. R., Manik, P., & Iqbal, M. (2017). Studi Kasus Kinerja Propeller Kaplan Series Akibat Pengurangan Diameter dan Penambahan End Plate dengan Metode CFD. Jurnal Teknik Perkapalan, 5(1), 205-213.
Attaran, M. (2017) “The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing,” Business Horizons, 60(5), pp. 677–688.
Budiyanto, M. A., Novri, J., Alhamid, M. I., & Ardiyansyah, A. (2019, January). Analysis of convergent and divergent-convergent nozzle of waterjet propulsion by CFD simulation. In AIP Conference Proceedings (Vol. 2062, No. 1). AIP Publishing.
Bulten, N.W.H. (2006) Numerical Analysis of a Waterjet Propulsion System. Available at: https://doi.org/10.6100/IR614907.
Bulten, N. (2008, March). A breakthrough in waterjet propulsion systems. In Proceedings of the International Maritime Defence Exhibition and Conference (pp. 1-6). Doha, Qatar: DIMDEX.
Fadhlin, D. (2017) “Analisis Gaya Dorong Propeller Kapal Penumpang Dengan Menggunakan Software Solidwork,” Teknik Mesin Pada Fakultas Teknik Universitas Muhammadiyah Sumatera Utara [Preprint].
Hasdiansah, H., & Pratama, Y. B. (2021). Pengaruh Parameter Proses Slicing Software Terhadap Kekasaran Permukaan Printing Part Menggunakan Filamen ST-PLA. Manutech: Jurnal Teknologi Manufaktur, 13(01), 33-40.
Hasdiansah, H., & Sugiyarto, S. (2021). Pengaruh Setting Parameter pada Slicing Software terhadap Surface Roughness Objek 3D Printing menggunakan Metode Taguchi. Jurnal Rekayasa Mesin, 16(3), 319-328.
Karabulut, Ş. (2015). Optimization of surface roughness and cutting force during AA7039/Al2O3 metal matrix composites milling using neural networks and Taguchi method. Measurement, 66, 139-149.
Molland, A. F., Turnock, S. R., & Hudson, D. A. (2017). Ship resistance and propulsion. Cambridge university press.
Nori, N. F., Harahap, D. R., & Hasdiansah, H. (2021, August). Pengaruh Variasi Stator Turbo Blade Terhadap Kekuatan Dorong Turbojet Drive Produk 3D Printing Material ST-PLA. In Prosiding Seminar Nasional Inovasi Teknologi Terapan (Vol. 1, pp. 189-195).
Ortolani, F., & Dubbioso, G. (2019). Experimental investigation of single blade and propeller loads by free running model test. Straight ahead sailing. Applied Ocean Research, 87, 111-129.
Pristiansyah, P., Hasdiansah, H., & Sugiyarto, S. (2019). Optimasi Parameter Proses 3D Printing FDM Terhadap Akurasi Dimensi Menggunakan Filament Eflex. Manutech: Jurnal Teknologi Manufaktur, 11(01), 33-40.
Setiawan, A. A., Karuniawan, B. W., & Arumsari, N. (2018, December). Optimasi parameter 3D printing terhadap keakuratan dimensi dan kekasaran permukaan produk menggunakan metode Taguchi Grey Relational Analysis. In Proceedings Conference on Design Manufacture Engineering and its Application (Vol. 2, No. 1, pp. 165-168).
Situmorang, R. N., Manik, P., & Santoso, A. W. B. (2020). Analisa Nilai Thrust Optimum Propeller Pada Kapal Tugboat Pelabuhan Paket-II 2x1850HP Dengan Variasi Diameter Propeller, Jumlah Daun Propeller & Kecepatan Putaran Propeller (RPM). Jurnal Teknik Perkapalan, 9(1), 112-116.
Subakti, Y., -, H., & Kurniawan, Z. (2021). Pengaruh Media, Temperatur Dan Waktu Perlakuan Annealing Pada Spesimen Standar ASTM D638 Type IV Menggunakan Filamen ST PLA. Sprocket Journal Of Mechanical Engineering, 3(1), 7-14.
Sumardi, S., Fasni, N., Martunis, M., & Munzir, M. (2020). Tinjauan Efektifitas Dan Perbandingan Kinerja Mesin Tempel Outboard Jenis Propeller Baling-Baling Konvensional Dengan Propeller Jenis Water Jet Propulsion. In Prosiding Seminar Nasional Politeknik Negeri Lhokseumawe (Vol. 4, No. 1, pp. 121-127).
Tangahu, D. H., & Ningsih, T. H. (2020). Optimasi Komposit Serat Kersen Kekuatan Bending Dengan Menggunakan Metode Taguchi. Jurnal Teknik Mesin, 8(1).
DOI: https://doi.org/10.18196/jqt.v5i2.20629
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Quantum Teknika : Jurnal Teknik Mesin Terapan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Quantum Teknika : Jurnal Teknik Mesin Terapan is indexed by :
Office:
Editorial of Quantum Teknika, Building D, Jl. Brawijaya, Tamantirto, Kasihan, Bantul, Yogyakarta.Telp: (0274) 387656
Fax: (0274) 387646
WA: +62896-7470-8638 (Mirza Yusuf)
Email: jqt@umy.ac.id
Quantum Teknika : Jurnal Teknik Mesin Terapan is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.