Desain Transmisi Hidrostatik untuk Roda Penggerak pada Mobil Terbang

Authors

  • Faiz Akbar Pradipta Departemen Teknik Mesin, Universitas Indonesia, Indonesia
  • Mohammad Adhitya Departemen Teknik Mesin, Universitas Indonesia, Indonesia

DOI:

https://doi.org/10.18196/jqt.v6i1.22104

Keywords:

Hydrostatic Transmission, Automotive Engineering, Driveline Design, Automotive Component Selection

Abstract

A flying car can fulfill two functions, as a vehicle on the road and as an airplane that capable of flying. To reduce aerodynamic drag, the drive wheels must be able to fold so that a flexible transmission system is required. The Hydrostatic Transmission (HT) system is a flexible transmission that uses a hose to connect hydraulic pump, which is coupled to the engine, to hydraulic motor, which is coupled to the wheel. This research analyzes the specifications of hydrostatic transmission components to optimally transmit power from a V6 engine to two drive wheels through a speed gear transmission system. The hydrostatic transmission system specifications, which include pumps, motors, hoses, charge pumps, and release valves, are analyzed using Simscape MATLAB software. This software enables the user to easily modify the parameters to build an optimal hydrostatic transmission design. To ensure optimal performance of the entire flying car propulsion system, a 60kW pump and 20kW motor are required.

References

Bottiglione, F., Mantriota, G., & Valle, M. (2018). Power-Split Hydrostatic Transmissions for Wind Energy Systems. Energys 2018, 11, 3369. https://doi.org/10.3390/en11123369

Comellas, M., Pijuan, J., & Potau, X. (2012). Analysis of a hydrostatic transmission driveline for its use in off-road multiple axle vehicles. Journal of Terramechanics, 49, 245–254.

Costa, G., & Sepehri, N. (2015). Hydrostatic Transmissions and Actuators: Operation, Modelling and Application. John Wiley & Sons.

Ibrahim, M. S. A. (2011). Investigation of Hydraulic Transmissions for Passenger Cars [Disertation]. RWTH Aachen.

Ivantysyn, J., & Ivantysynova, M. (2001). Hydrostatic Pumps and Motors, Principles, Designs, Performance, Modelling, Analysis, Control and Testing. Academia Books International.

Jazar, R. N. (2014). Vehicle Dynamics: Theory and Application 2nd Edition (2nd ed.). Springer.

Keller, N., & Ivantysynova, M. (2017). A New Approach to Sizing Low Pressure Systems. Proceedings of ASME/BATH Symposium on Fluid Power and Motion Control.

Macor, A., & Rossetti, A. (2011). Optimization of Hydro-mechanical Power Split Transmissions. Mechanism and Machine Theory, 46, 1901–1919. https://doi.org/10.1016/j.mechmachtheory.2011.07.007

Mandal, S. K., Singh, A. K., & Verma, Y. (2012). Performance Investigation of Hydrostatic Transmission System as a Function of Pump Speed and Load Torque. Journal Inst. Eng. India Ser. C., 93(2), 187–193.

Manring, N. D. (2016). Mapping the Efficiency for Hydrostatic Transmission. Journal Dynamic System Measurement & Control, 138(3). https://doi.org/10.1115/1.4032289

Nervergna, N., & Rundo, M. (2020). Passi Nell’oleodinamica. Epics.

Paoluzzi, R., & Zarotti, L. G. (2013). The Minimum Size of Hydrostatic Transmissions for Locomotion. Journal Terramechanics, 50, 153–164. https://doi.org/10.1016/j.jterra.2013.03.006

Paoluzzi, R., & Zarotti, L. G. (2017). Properties and sizing methods of 2-motor transmissions. International Journal of Fluid Power, 18, 3–16.

Petter, K. (2010, January 27). New system solutions for working hydraulics to achieve energy efficiency improvement. IFS 2010 Meeting.

Shaw, D., Yu, J. J., & Chieh, C. (2013). Design of a Hydraulic Motor System Driven by Compressed Air. Energies 2013, 6, 3149–3166. https://doi.org/10.3390/en6073149

Singh, V. P., Pandey, A. K., & Dasgupta, K. (2021). Steady-state Performance Investigation of Closed-Circuit Hydrostatic Drive Using Variable Displacement Pump and Variable Displacement Motor. Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng., 235, 249–258. https://doi.org/10.1177/0954408920953662

Vacca, A., & Franzoni, G. (2021). Hydraulic Fluid Power: Fundamentals, Applications, and Circuit Design. Wiley.

Zarotti, G. L. (2003). TrasmissioniIdrostatiche. IstitutoperleMacchineAgricoleeMovimentoTerra2003, 707.

Downloads

Published

2024-10-31

How to Cite

Pradipta, F. A., & Adhitya, M. (2024). Desain Transmisi Hidrostatik untuk Roda Penggerak pada Mobil Terbang. Quantum Teknika : Jurnal Teknik Mesin Terapan, 6(1), 34–45. https://doi.org/10.18196/jqt.v6i1.22104

Issue

Section

Articles