Investigating Impact of Gasket Cylinder Addition and Octane Rating on Engine Performance

Authors

  • Bahtiar Rahmat Furniture Production Engineering Study Program, Politeknik Industri Furnitur dan Pengolahan Kayu, Indonesia
  • Mohammad Burhan Rubai Wijaya Automotive Engineering Education Study Program, Universitas Negeri Semarang, Indonesia
  • Yuris Bahadur Wirawan Mechanical Engineering in Production and Maintenance Study Program, Politeknik Negeri Semarang, Indonesia
  • Fahmy Zuhda Bahtiar Automotive Engineering Vocational Education Study Program, Universitas Ivet, Indonesia
  • Katiko Imamul Muttaqin Heavy Equipment Operation and Predictive Maintenance Study Program, Politeknik Negeri Banjarmasin, Indonesia

DOI:

https://doi.org/10.18196/jqt.v6i1.23429

Keywords:

Gasket, Octane, Power, Torque, Performance

Abstract

The increase in people's mobility were reflected in the growing sales of motor vehicles. This has driven automotive manufacturers to compete in creating more powerful and efficient engines. These engines were designed with high compression ratios to achieve greater efficiency. High compression ratio engine re-quired fuel with the appropriate octane number to attain opti-mal performance. It is regrettable that many users had not un-derstood that an engine with high compression had required gasoline with a high octane rating as well. This research aims to investigate the impact of different compression ratios on the output power and torque of a single-cylinder combustion en-gine using RON 92, RON 95, and RON 100 gasoline. To modify the compression ratio, various numbers of gaskets were used on the cylinder head, with 2 and 3 gaskets for each configuration. A dynamometer test was employed to measure the differences in engine performance. The research results indicate that the engine with the highest compression pressure (11 Kg/cm2) using RON 100 gasoline produced the highest power of 7.90 kW, with the highest torque of 9.60 Nm. Conversely, the engine with the lowest compression pressure (10 Kg/cm2) using RON 92 gasoline produced the lowest power and the lowest torque.

References

AISI (2022) Domestic Statistic Distribution of Motorcycle in Indonesia 2021. Available at: https://www.aisi.or.id/statistic/.

Benson, R.S. and Whitehouse, N.D. (1979) Internal Combustion Engines. A Detailed Introduction to the Thermodynamics of Spark and Compression Ignition Engines, Their Design and Development. Manchester: Pergamon Press.

Bi, F., Ma, T. and Wang, X. (2019) ‘Development of a novel knock characteristic detection method for gasoline engines based on wavelet-denoising and EMD decomposition’, Mechanical Systems and Signal Processing, 117, pp. 517–536. Available at: https://doi.org/https://doi.org/10.1016/j.ymssp.2018.08.008.

Direktorat Jendral Minyak dan Gas Bumi (2018) Nomor: 0177K/10/DJM.T/2018. tentang Standar dan Mutu (Spesifikasi) Bahan Bakar Minyak Jenis Bensin yang Dipasarkan di dalam Negeri.

Direktorat Jendral Minyak & Gas Bumi (2021) Statistik minyak gas dan bumi semester 1.

Ferguson, A.T. (2020) Internal combustion engines: applied thermosciences, 4th Edition. John Wiley & Sons.

Gong, C. Liu, F., Sun, J., and Wang, K. (2016) ‘Effect of compression ratio on performance and emissions of a stratified-charge DISI (direct injection spark ignition) methanol engine’, Energy, 96, pp. 166–175. Available at: https://doi.org/https://doi.org/10.1016/j.energy.2015.12.062.

Heywood, J.B. (1988) Internal Combustion Engine (ICE) Fundamentals, McGraw-Hill Education. Available at: https://doi.org/10.1002/9781118991978.hces077.

Jiang, C., Huang, G., Liu, G., Qian, Y., and Lu, X. (2019) ‘Optimizing gasoline compression ignition engine performance and emissions: Combined effects of exhaust gas recirculation and fuel octane number’, Applied Thermal Engineering, 153, pp. 669–677. Available at: https://doi.org/https://doi.org/10.1016/j.applthermaleng.2019.03.054.

Kalghatgi, G. (2017) ‘Knock onset, knock intensity, superknock and preignition in spark ignition engines’, International Journal of Engine Research, 19(1), pp. 7–20. Available at: https://doi.org/10.1177/1468087417736430.

Lourenço, M. A. de M., Eckert, J. J., Silva, F. L., Miranda, M. H. R., and Silva, L. C. de A. (2023) ‘Uncertainty analysis of vehicle fuel consumption in twin-roller chassis dynamometer experiments and simulation models’, Mechanism and Machine Theory, 180, p. 105126. Available at: https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2022.105126.

Maurya, R.K. and Agarwal, A.K. (2011) ‘Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine’, Applied Energy, 88(4), pp. 1169–1180. Available at: https://doi.org/10.1016/J.APENERGY.2010.09.015.

Mogi, Y., Oikawa, M., Kichima, T., Horiguchi, M., Goma, K., Takagi, Y., and Mihara, Y. (2022) ‘Effect of high compression ratio on improving thermal efficiency and NOx formation in jet plume controlled direct-injection near-zero emission hydrogen engines’, International Journal of Hydrogen Energy, 47(73), pp. 31459–31467. Available at: https://doi.org/https://doi.org/10.1016/j.ijhydene.2022.07.047.

Purnomo, B.C. and Munahar, S. (2019) ‘Pengaruh Tekanan Kompresi Terhadap Daya Dan Torsi Pada Engine Single Piston’, Quantum Teknika : Jurnal Teknik Mesin Terapan, 1(1), pp. 14–18. Available at: https://doi.org/10.18196/jqt.010103.

Qi, Y., Wang, Z., Wang, J., and He, X. (2015) ‘Effects of thermodynamic conditions on the end gas combustion mode associated with engine knock’, Combustion and Flame, 162(11), pp. 4119–4128. Available at: https://doi.org/https://doi.org/10.1016/j.combustflame.2015.08.016.

Rahmat, B., Wijaya, M.B.R., Wirawan, Y.B., dan Bahtiar, F.Z. (2023) ‘Performa motor bakar satu silinder dengan variasi oktan bahan bakar dan tekanan kompresi’, Jurnal Teknik Mesin Indonesia, 18(2), pp. 83–89.

Rahmat, B. and Wijaya, M.B.R. (2023) ‘Performance Comparison of One Cylinder Combustion Engine with Variations of Compression Pressure and Octane Number Gasoline’, SINTEK JURNAL: Jurnal Ilmiah Teknik Mesin, 17(1), pp. 31–37. Available at: https://doi.org/https://doi.org/10.24853/sintek.17.1.31-37.

Rodríguez-Fernández, J., Ramos, A., Barba, J., Cárdenas, D., and Delgado, J. (2020) ‘Improving Fuel Economy and Engine Performance through Gasoline Fuel Octane Rating’, Energies. Available at: https://doi.org/10.3390/en13133499.

Shao, J. and Rutland, C.J. (2015) ‘Modeling Investigation of Different Methods to Suppress Engine Knock on a Small Spark Ignition Engine’, Journal of Engineering for Gas Turbines and Power, 137(6). Available at: https://doi.org/10.1115/1.4028870.

Wang, Z., Liu, H., Song, T., Qi, Y., He, X., Shuai, S., and Wang, J. et al. (2014) ‘Relationship between super-knock and pre-ignition’, International Journal of Engine Research, 16, pp. 166–180. Available at: https://doi.org/10.1177/1468087414530388.

Zhou, Z., Kar, T., Yang, Y., Brear, M., Leone, T. G., Anderson, J. E., Shelby, M. H., Curtis, E., and Lacey, J. (2021) ‘The significance of octane numbers to drive cycle fuel efficiency’, Fuel, 302, p. 121095. Available at: https://doi.org/https://doi.org/10.1016/j.fuel.2021.121095.

Zhou, Z., Yang, Y., Brear, M., Kar, T., Leone, T., Anderson, J., Shelby, M., and Lacey, J. (2023) ‘The significance of octane numbers to hybrid electric vehicles with turbocharged direct injection engines’, Fuel, 334, p. 126604. Available at: https://doi.org/https://doi.org/10.1016/j.fuel.2022.126604.

Downloads

Published

2024-10-31

How to Cite

Rahmat, B., Wijaya, M. B. R., Wirawan, Y. B., Bahtiar, F. Z., & Muttaqin, K. I. (2024). Investigating Impact of Gasket Cylinder Addition and Octane Rating on Engine Performance. Quantum Teknika : Jurnal Teknik Mesin Terapan, 6(1), 18–26. https://doi.org/10.18196/jqt.v6i1.23429

Issue

Section

Articles