Analisis Lentur Balok Penampang T Berlubang Memanjang Menggunakan Metode Elemen Hingga Non-linier

(Flexural Analysis of Longitudinal Hollow Core Reinforced Concrete T Beam Using Nonlinear Finite Element Method)

PRAGANIF SUKARNO, MUSLIKH, DJOKO SULISTYO

Abstract

Numerical analysis is a time-, cost- and equipment-effective method to study the behavior of structures. ATENA is one of the available software-based on finite element method. Hollow cross section is one way to reduce the weight of concrete beam. The effect of holes on beam may reduce the bending resistance. The hollow beam was numerically modeled which and subsequently analyzed using the ATENA v.2.10 software. Material parameters being used as input data was obtained from laboratory tests, assuming that steel-concrete bond was prefect, and and the steel reinforcement was modeled as discrete. The results of numerical analysis of the ATENA were then compared with experimental test results on the flexural behavior and serviceability limit state of reinforced concrete hollow beams lengthwise (Amir, 2010), then study the variation of quality parameters of concrete and the hole size variations. The results shows that the collapse load of hollow beam reached only 96.71% and deflection reached 135.96%. Stiffness of hollow concrete beam was also showed a higher stiffness of the experiment. The crack pattern is flexural fracture and very much agree with that of the experiments. Test parameters of concrete quality variations as well as the hole size variation showed higher concrete quality/size of the hole will reduce the ductility of beam.

Keywords: reinforced concrete, longitudinal hollow beam, flexure, ductility, crack

Pendahuluan

Didasarkan pada tujuan peningkatan kemampuan komponen struktural dan optimasi hasil perancangan sering dijumpai balok beton bertulang dengan penampang I, khususnya pada struktur jembatan. Dibandingkan dengan penampang persegi, penampang ini dapat mengurangi berat sendiri cukup signifikan, sehingga beban yang bekerja pada beton bertulang dapat diperkecil tanpa mengurangi kekuatannya.

Beton bertulang dengan bentuk penampang I pada pelaksanaannya tidak sederhana atau cukup rumit dilihat dari segi pemasangan dan pengerjaan sengkang dan bekestingnya. Kerumitan ini dapat diatasi dengan penampang persegi berlubang memanjang yang ekuivalen dengan penampang I. Diharapkan penampang persegi berlubang ekivalen dengan penampang I, berdasarkan dimensi dan kekuatan nominalnya.

Pada penelitian ini akan dilakukan analisis balok beton bertulang tampang T berlubang memanjang hasil eksperimen Amir (2010) dengan metode elemen hingga menggunakan software ATENA Versi 2.1.10 dan GID sebagai Pre-Proccessor. Analisis dilakukan terhadap model balok beton bertulang tampang T berlubang memanjang dan balok beton bertulang tampang I.

Amir (2010) melakukan pengujian eksperimental mengenai perilaku lentur pada keadaan layan dan ultimit balok beton bertulang berlubang. Benda uji terdiri 2 jenis, yaitu 1 buah balok kontrol (BK) dan 3 buah balok berlubang (BB) dengan ukuran tinggi 300 mm, lebar 200 mm dan panjang 3500 mm.

Hasil analisis dari penelitian tersebut menunjukkan bahwa kapasitas baik BK maupun BB dari segi kekuatan lentur tidak jauh berbeda, secara berturut-turut BB1 2,03%, BB2 2,49% dan BB3 3,96% terhadap BK. Kekakuan lentur hasil eksperimen berturut-turut mengalami penurunan sebagai berikut BB1 -62,88 %; BB2 -63,58 %, dan BB3 -22,70 % terhadap BK, sedangkan daktilitas berturut-turut juga mengalami penurunan sebagai berikut BB1 -50,106 %; BB2 -46,398 %; BB3 -58,543 % terhadap BK. Untuk pola retak BK maupun BB dimulai di daerah tengah bentang dan pada beban maksimum pola retak saat runtuh mengalami kegagalan lentur.

(a). Balok Kontrol (BK)

(b) Balok Berlubang (BB)

GAMBAR 1. Dimensi penampang balok sperimen (Amir, 2010)

Pemodelan Konstitutif pada Beton Bertulang

Beton merupakan material yang sangat heterogen sehingga bersifat sangat nonlinear. Dasar-dasar model konstitutif beton dalam ATENA menggunakan konsep smeared crack kerusakan pendekatan dan (fracture mechanics). Reaksi tegangannya berdasarkan konsep kerusakan dengan uniaxial stress-strain law. Hukum ini menjelaskan kerusakan beton akibat pembebanan monotonic yang ditunjukkan pada Gambar 2. Tegangan puncak f.^{'ef} dan f'^{ef} uniaksial perilaku pada

ditentukan berdasarkan *biaxial failure surface* yang ditunjukkan dalam Gambar 3 (Kupfer et al., 1969 dalam Cervenka, 2007).

GAMBAR 2. Hukum regangan dan tegangan uniaxial untuk beton (Kupfer et al., 1969 dalam Cervenka, 2007)

GAMBAR 3. Fungsi kegagalan biaxial untuk beton (Kupfer et al., 1969 dalam Cervenka, 2007)

Fictious crack model digunakan dalam perilaku tarik beton berdasarkan crack-opening law dan fracture energi yang dikombinasikan dengan crack band. Pada program ATENA, crack opening law yang terlihat pada Gambar 4 menggunakan fungsi exponensial yang diambil berdasarkan eksperimen Hordijk (1991).

GAMBAR 4. Stress-crack opening law menurut Hordijk (1991, dalam Cervenka, 2007)

Untuk kondisi tekan setelah tegangan puncak (compression after peak stress) menggunakan fictitious compression model sebagai asumsi dasar yang diambil berdasarkan eksperimen Van Mier (1986, dalam Cervenka, 2007). Hal ini dapat dilihat pada Gambar 5, bahwa keruntuhan tekan terlokalisasi pada bidang yang tegak lurus terhadap arah tegangan utama.

GAMBAR 5. Softening displacement law pada kondisi tekan (Cervenka, 2007)

Dua model retak dikenal dalam program *ATENA* yaitu *fixed crack* dan *rotated crack*. Pada *fixed crack* (Gambar 6), arah retak identik dengan arah regangan utama dan berubah jika arah regangan berubah.

Di dalam *ATENA* model hubungan teganganregangan untuk tulangan baja dengan *multi-line law* ditunjukkan pada Gambar 7.

GAMBAR 7. Hukum tegangan regangan multilinier untuk tulangan. (Cervenka, 2007)

METODE PENELITIAN

Dalam penelitian ini dimodelkan 2 jenis balok BK dan BB untuk meninjau perilaku lentur dari balok tersebut. Benda uji yang digunakan berupa balok beton bertulang yang berukuran sesuai dengan yang ditunjukkan dalam Gambar 8 dan Gambar 9. Tumpuan balok adalah sendi dan rol dengan pembebanan berupa beban terpusat manatonic yang diberikan secara bertahap sebesar 1 KN yang dilimpahkan pada dua titik hingga mencapai beban ultimitnya. Spesifikasi benda uji dapat dilihat pada Tabel 1.

GAMBAR 6. Fixed Crack Model dan Rotated Crack Model (Cervenka, 2007)

TABEL 1. Spesifikasi benda uji

Kode	Jumlah	Panjang	Lflens	L web (mm)		Tinggi (mm)		Tul.Utama		Tul.
Koue Juillan	(mm)	(mm)	Bersih	Kotor	Balok	Lubang	Atas	Bawah	Sengkang	
BK	1	3500	600	125	200	300	125	10D6	2D16- 3D16	P6-50
BB	3	3500	600	125	200	300	125	10D6	2D16- 3D16	P6-50

Keterangan : BK : Balok kontrol

BB : Balok uji dengan perlakuan terjadi keruntuhan lentur

GAMBAR 8. Penampang balok I sebagai balok kontrol

GAMBAR 9. Penampang balok T berlubang (hollow) sebagai balok uji

Pemodelan

Pada pemodelan elemen hingga non linier ini hanya dibuat 2 buah model yang mewakili sebagai pembanding, yaitu sebuah model balok kontrol (BK) dan sebuah balok berlubang (BB). Pemodelan elemen hingga dilakukan secara Graphical User Interface (GUI) dengan bantuan program GID, yang dapat berinteraksi dengan program ATENA. Dalam hal ini program GID dipakai untuk melakukan gambar geometri, input material, kondisi batas (boundary condition) dan mesh elemen hingga untuk analisis nonlinier tiga dimensi. Input data yang dihasilkan GID selanjutnya akan diproses oleh ATENAWin. Model elemen hingga non linier ini menggunakan pendekatan smeared cracking model dengan model solid 3 dimensi (3D). Selanjutnya hasil elemen hingga dibandingkan dengan eksperimen Amir (2010).

Input material beton dalam penelitian ini concrete dimodelkan dengan reinforced dengan Material Prototye Secara CC3DnonLinCementitious. umum, material beton yang dimodelkan pada penelitian ini menggunakan kuat tekan beton sebesar 33,786 MPa yang seragam di seluruh balok. Khusus untuk uji parameter mutu dipakai mutu beton dengan fc' = 20 MPa dan fc' = 50 MPa, yaitu berada di bawah dan di atas benda uji eksperimen.

Tulangan dimodelkan menggunakan *linier* element CCIsoTuss(xx_x). Jenis material yang dipilih dari ATENA adalah CCReinforcement. Semua tulangan digambarkan secara discrete.

Meshing untuk balok BK menghasilkan 2888 elemen dan balok BB menghasilkan 2868 elemen (Gambar 11 dan Gambar 12).

GAMBAR 10. Bagan alir penelitian

TABEL 2. Data	material	beton
---------------	----------	-------

Jenis Parameter Beton dalam S-BETA Material	Input Material balok					
Kode Material	BK BB	BK BB	BK BB			
Modulus Elastisitas (Es)	27319,09113	21019,03899	33234,01872			
Poisson Rasio (v)	0,2	0,2	0,2			
Kuat tarik beton (f _t)	4,068800806	3,130495168	4,949747468			
Kuat tekan beton (f _c ') MPa	-33,786	-20	-50			
Fracture Energy (GF)	0,00010172	7,82624E-05	0,000123744			
Fixed Crack	0,7	0,7	0,7			
Plastic Strain (ε_{cp})	-0,002473435	-0,001903037	-0,003008965			
$f_{c0}(MPa)$	-22,524	-13,33333333	-33,33333333			
Critical comp disp wd	-0,0005	-0,0005	-0,0005			
Excentricity-EXC	0,52	0,52	0,52			
Dir.of pl flow-Beta	0	0	0			
Density (Rho)	0,023	0,023	0,023			
Thermal Expansion-Alpha	0,000012	0,000012	0,000012			

	Tulangan	Tulangan Sengkang dan Tulangan
Parameter	Pokok	Bagi
	D 13 mm	Ø6 mm
Kode Material	BK	BK
Kode Wateriai	BB	BB
Jenis Material ATENA	CCReinforcement	CCReinforcement
Modulus Elastisitas (MPa)	200.000	200.000
Tegangan Leleh (f_y) MPa	421,2511973	349,82
ε2	0,02	0,04005
$f_2 MPa$	461,8161274	357,03
83	0,06	0,07005
$f_3 MPa$	567,9090215	420,14
ε4	0,10	0,11005
$f_4 MPa$	605,3535724	452,60
E5	0,12	0,17005
$f_5 MPa$	614,7147101	476,04
Luasan (mm ²)	0,000120763	0,0000273

GAMBAR 11. Meshing balok kontrol (BK)

GAMBAR 12. Meshing balok berlubang (BB)

Kondisi batas pada tumpuan sendi menahan arah pergerakan translasi arah sumbu x dan sumbu y, sedang sumbu z bebas. Pada tumpuan rol arah pergerakan translasi yang ditahan hanya arah y, arah x dan z bebas.

Agar diperoleh hasil yang konvergen maka dalam memodelkan benda uji tersebut,

ditempatkan beberapa *monitor point* yang berfungsi untuk memonitor *displacement* yang ingin diketahui. Pemasangan *monitor point* diletakkan pada sepanjang node tengah bentang dan tepat pada sumbu y di titik berat penampang.

GAMBAR 13. Pembebanan, kondisi batas dan monitor

GAMBAR 14. Perbandingan hubungan beban-lendutan dan beban-regangan hasil eksperimen Amir (2010) dan numerik balok kontrol.

PEMBAHASAN

Analisis Balok Kontrol (BK)

Dari Gambar 14 hasil numerik dibandingkan dengan hasil dari eksperimen Amir (2010). Beban ultimit dari hasil numerik adalah 107 KN (98,53% hasil eksperimen) dengan lendutan sebesar 38,27 mm (49,19% hasil eksperimen). Beban ultimit dari hasil eksperimen Amir (2010) didapat sebesar 108,6 KN dengan lendutan sebesar 77,80 mm (disajikan pada Tabel 4).

Gambar 15 dan Gambar 16 memperlihatkan pola retak lentur yang terjadi pada hasil numerik walaupun tidak sama bentuk pola retaknya dengan hasil eksperimen.

TABEL 4. Perbandingan hasil beban-lendutan dan beban regangan antara eksperimen Amir (2010) dan numerik

	Re	tak awal	R		
Hasil	Beban (KN)	Lendutan (mm)	Beban (KN)	Ket.	
Numerik	29	0,79	107	38,27	-
Eksperimen	16,5	0,65	108,6	77,797	-

GAMBAR 15. Pola retak balok kontrol (BK) hasil eksperimen Amir (2010)

GAMBAR 16. Pola retak balok kontrol (BK) hasil numerik

TABEL 5. Perbandingan retak hasil eksperimen Amir (2010) dan numerik

	Retak awa	al	Retak A		
Hasil	Lebar retak (mm)	Beban (KN)	Lebar retak (mm)	Beban (KN)	Keterangan
Numerik	0,00003746	29	1,625	107	-
Eksperimen	0,08	16,5	2,1	108,6	-

Gambar 17 menunjukkan perbedaan hasil perhitungan numerik dengan hasil eksperimen. Pada tahap awal sudah terjadi penurunan kekakuan pada hasil eksperimen vang disebabkan oleh interlock antar material pembentuk beton itu sendiri dan rongga akibat tidak sempurnanya pelaksanaan pengecoran. Sedangkan pada hasil numerik (garis mendatar) belum terjadi penurunan kekakuan karena secara teoritis material beton dianggap homogen dan memang belum terjadi retak. Pada tahap berikutnya nilai kekakuan yang terjadi memiliki bentuk yang mirip. Secara numerik nilai kekakuannya melebihi nilai hasil eksperimen. Hasilnya disajikan pada Tabel 6, Tabel 7 dan Tabel 8.

Hubungan beban-lendutan dan beban-regangan balok kontrol (BK) untuk mutu beton bervariasi ditunjukkan pada Gambar 18. Hasilnya disajikan dalam Tabel 9.

GAMBAR 17. Perbandingan kekakuan hasil eksperimen Amir (2010) dan numerik balok kontrol (BK)

ē			1	
Hagil	Beban	Lendutan	Kekakuan	Votorongon
Hasil	(N)	(mm)	(N/ mm)	Keterangan
Numerik	29.000	0,79	36.778.694	+ 145,09 %

0,65

Eksperimen

16.500

TABEL 6. Perbandingan kekakuan pada kondisi retak awal hasil eksperimen Amir (2010) dan numerik

TABEL 7. Perbandingan kekakuan pada kondisi leleh hasil eksperimen Amir (2010) dan numerik

25.384,615

_

Hasil	Beban (N)	Lendutan (mm)	Kekakuan (N/ mm)	Keterangan
Numerik	95.000	10,09	9.415,26	+ 131,69 %
Esperimen	98.900	13,833	7.149,4	-

Hasil	δy (mm)	δu (mm)	Daktilitas u = δu/δy	Keterangan
Numerik	10,09	38,27	3,793	-19,28 %
Eksperimen	13,833	65,004	4,699	-

TABEL 8. Nilai daktilitas balok BK

GAMBAR 18. Hubungan beban-lendutan dan beban-regangan balok kontrol (BK) untuk mutu beton bervariasi.

	Retak awal				Leleh (Yield)			Runtuh (ultimate)			
Mutu Beton (fc')	Beban (KN)	Lebar retak (mm)	Lendutan (mm)	Kekakuan (N/ mm)	Beban (KN)	Lendutan (mm)	Kekakuan (N/ mm)	Beban (KN)	Lebar retak (mm)	Lendutan (mm)	Daktili- tas
20 MPa	23	5,780 10-6	0,79	29.113,92	94	11,42	8.231,17	105	1,562	43,44	3,803
33,786 MPa	29	3,746 10 ⁻⁵	0,79	36.778.694	95	10,09	9.415,26	107	1,625	38,27	3,793
50 MPa	34	1,543. 10 ⁻⁵	0,78	43.589,74	95	8,94	10.626,40	108	2,200	33,343	3,730

TABEL 9. Rangkuman hasil dari uji parameter variasi mutu beton balok kontrol

Analisis Balok Berlubang (BB)

Dari Gambar 19 beban ultimit dari hasil numerik adalah 108 KN dengan lendutan sebesar 46,31 mm, sedangkan beban ultimit hasil eksperimen Amir (2010) dapat dilihat pada Tabel 10.

GAMBAR 19. Perbandingan hubungan beban-lendutan dan beban-regangan hasil eksperimen Amir (2010) dan numerik balok berlubang (BB).

TABEL 10. Perbandingan hasil beban-lendutan antara eksperimen Amir (2010) dan numerik

	Reta	ak awal	Ru	ntuh	
Hasil	Beban	Lendutan	Beban	Lendutan	Keterangan
	(KN)	(mm)	(KN)	(mm)	
Eksperimen BB1	16,9	1,793	110,8	31,4	-
Eksperimen BB2	15,9	1,720	111,3	40,307	-
Eksperimen BB3	15,6	0,795	112,9	30,48	-
Numerik	31	0,84	108	46,31	-

TABEL 11. Perbandingan retak hasil eksperimen Amir (2010) dan numerik

	Retak a	awal	Retak	_	
Hasil	Lebar retak (mm)	Beban (KN)	Lebar retak (mm)	Beban (KN)	Keterangan
Eksperimen BB1	0,03	16,9	2,5	110,8	-
Eksperimen BB2	0,04	15,9	3,2	111,3	
Eksperimen BB3	0,02	15,6	4,1	112,9	
Numerik	2,681. 10 ⁻⁴	31	1,771	108	-

GAMBAR 20. Pola retak balok berlubang (BB) hasil eksperimen Amir (2010) berurutan BB1, BB2 dan BB3

GAMBAR 21. Pola retak balok berlubang (BB) hasil numerik

Gambar 20 dan Gambar 21 memperlihatkan pola retak lentur yang terjadi pada hasil numerik walaupun tidak sama bentuk pola retaknya dengan hasil eksperimen.

Gambar 22 menunjukkan perbedaan hasil perhitungan numerik dengan hasil eksperimen, pada tahap awal sudah terjadi penurunan kekakauan pada hasil eksperimen yang disebabkan oleh interlock antar material pembentuk beton itu sendiri dan rongga akibat tidak sempurnanya pelaksanaan pengecoran. Sedangkan pada hasil numerik (garis mendatar) belum terjadi penurunan kekakuan karena secara teoritis material beton dianggap homogen dan memang belum terjadi retak. Pada tahap berikutnya nilai kekakuan yang terjadi memiliki bentuk yang mirip, secara numerik nilai kekakuannya melebihi nilai hasil eksperimen. Hasilnya disajikan pada Tabel 12, Tabel 13 dan Tabel 14.

Hubungan balok BB dengan variasi mutu beton dapat dilihat pada Gambar 23. Hasilnya disajikan dalam Tabel 15. Hubungan balok BB dengan variasi ukuran lubang dapat dilihat pada Gambar 24. Hasilnya disajikan dalam Tabel 16.

GAMBAR 22. Perbandingan kekakuan hasil eksperimen Amir (2010) dan numerik balok berlubang (BB)

TABEL 12. Perbandingan kekakuan pada kondisi retak awal hasil eksperimen Amir (2010) dan numerik

Hasil	Beban (N)	Lendutan (mm)	Kekakuan (N/ mm)	Keterangan	
Eksperimen BB1	16.900	1,793	9.423,792	-	
Eksperimen BB2	15.900	1,72	9.244,186	-	
Eksperimen BB3	15.600	0,795	19.622,642	-	
Numerik	31.000	0,84	36.904,76	-	

TABEL 13. Perbandingan kekakuan pada kondisi leleh hasil eksperimen Amir (2010) dan numerik

Hasil	Beban (N)	Lendutan (mm)	Kekakuan (N/ mm)	Keterangan
Eksperimen BB1	98.200	15,487	6.340,94	-
Eksperimen BB2	98.800	15,47	6.386,55	-
Eksperimen BB3	102.500	12,823	7.993,24	-
Numerik	94.000	9,91	9.485,37	-

TABEL 14. Daktilitas benda uji balok berlubang (BB)

Hasil	δy (mm)	δu (mm)	Daktilitas u = δu/δy	Keterangan
Eksperimen BB1	15,487	32,433	2,094	
Eksperimen BB2	15,47	34,843	2,252	
Eksperimen BB3	12,823	26,949	2,102	
Numerik	9,91	46,31	4,673	

GAMBAR 23. Hubungan beban-lendutan dan beban-regangan balok berlubang untuk mutu beton bervariasi

TABEL 15. Rangkuman hasil dari uji parameter variasi mutu beton balok berlu	bang (BB)
---	-----------

Masta		Retak awal				Leleh (Yield)		Runtuh (ultimate)			
Beton Be- (fc') ban (KN)	Be- ban (KN)	Lebar retak (mm)	Lendut- an (mm)	Kekakuan (N/ mm)	Be- ban (KN)	Lendut- an (mm)	Kekaku-an (N/ mm)	Be- ban (KN)	Lebar retak (mm)	Lendut- an (mm)	Daktilitas
20 MPa	25	3,246.10-4	0,85	29.411,76	94	9,91	9.485,37	105	2,67	68,07	6,869
33,786 MPa	31	2,681.10 ⁻⁴	0,84	36.904.76	94	9,91	9.485,37	108	1,771	46,31	4,673
50 MPa	36	1,190.10-4	0,82	43.902,44	94	8,99	10.456,06	107	1,007	68,07	2,892

GAMBAR 24. Hubungan beban-lendutan dan beban-regangan balok berlubang untuk ukuran lubang penampang beton bervariasi

TABEL 16. Rangkuman hasil dari uji parameter variasi ukuran lubang penampang beton balok berlubang (BB)

Ukuran	Retak awal				Leleh (Yield)			Runtuh (ultimate)			
lubang penam- B pang (] beton	Beban (KN)	Lebar retak (mm)	Lendut- an (mm)	Kekakuan (N/ mm)	Beban (KN)	Lendut- an (mm)	Kekakuan (N/ mm)	Beban (KN)	Lebar retak (mm)	Lendut- an (mm)	Daktilitas
50 %	31	1,333.10-7	0,82	37.804,88	96	9,75	9.846,15	107	1,617	29,80	3,056
100 %	31	2,681.10 ⁻	0,84	36.904,76	94	9,91	9.485,37	108	1,771	46,31	4,673
150 %	29	5,697. 10 ⁻	0,82	35.365,85	93	9,93	9.365,56	108	3,103	51,69	5,205

KESIMPULAN

Dari hasil analisis lentur balok penampang-T berlubang memanjang dengan menggunakan program ATENA dapat diambil beberapa kesimpulan sebagai berikut :

- Analisis dengan program ATENA untuk balok berlubang (BB) dan balok kontrol (BK) memberikan hasil hubungan bebanlendutan yang hampir sama baik. Kekakuan model numerik hasil analisis ATENA lebih kaku dari eksperimen Amir.
- 2. Dari kurva hubungan beban–lendutan, beban ultimit model numerik balok BB 96,71 % dari model eksperimen, sedangkan lendutan 135,96 % dari model eksperimen.
- 3. Pada pemodelan yang bersifat parametrik untuk balok kontrol (BK) terhadap mutu beton yang bervariasi, menunjukkan bahwa

semakin tinggi mutu beton yang dipakai semakin getas.

- 4. Perbandingan hasil analisis numerik dengan hasil uji eksperimen untuk balok berlubang (BB), hasil numerik menunjukkan pada daerah elastis berada di atas dari ketiga benda uji eksperimen, tetapi pada daerah hardening hasil numerik menunjukkan berada diantara ketiga benda uji eksperimen.
- 5. Pemodelan yang bersifat parametrik untuk balok berlubang (BB) terhadap mutu beton yang bervariasi menunjukkan hasil yang sama seperti balok kontrol (BK), yaitu semakin tinggi mutu beton yang dipakai semakin getas.
- 6. Pemodelan yang bersifat parametrik untuk balok berlubang (BB) terhadap ukuran lubang yang ada pada penampang balok beton yang bervariasi menunjukkan hasil kebalikan terhadap variasi mutu beton yaitu

semakin luas lubang yang dipakai semakin daktail.

7. Baik balok BK maupun balok BB menunjukkan pola keruntuhan yang dihasilkan adalah keruntuhan lentur serupa dengan keruntuhan eksperimen.

UCAPAN TERIMA KASIH

Diucapkan terima kasih yang tulus kepada semua pihak yang telah membimbing, mengajarkan dan berdiskusi dalam penggunaan program ATENA, serta atas saran dan masukan yang diberikan selama penelitian ini.

DAFTAR PUSTAKA

- Amir, M.Y. (2010). Perilaku Lentur Pada Keadaan Layan dan Batas Balok beton Bertulang Berlubang Memanjang, Tesis, UGM, Yogyakarta.
- Cervenka J, Bazant P. Z, Wierer M. (2004). Equivalent Localization element for Crack Band Approach to Mesh – Sensitivity in Microplane Model, *International Journal For Numerical Methods in Engineering*, 62, pp. 700 – 726.
- Cervenka V, Jendele L, Cervenka J. (2007). *Atena Theory.*, Praha, Czech Republic.

PENULIS:

Praganif Sukarno[⊠]

Jurusan Teknik Sipil, Fakultas Teknik, Politeknik Negeri Jakarta, Jl. Prof. Dr. GA Siwabesi, Kampus UI Depok 16425.

[™]Email: sipil_pnj@yahoo.com

Muslikh, Djoko Sulistyo

Jurusan Teknik Sipil dan Lingkungan, Fakultas Teknik, Universitas Gadjah Mada, Jl. Grafika no. 2, Yogyakarta.