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ABSTRACT 

In general, a vehicle model is one having multiple bodies, with each body 
being supported on a suspension represented by the tires, springs, and damping 
devices. The components of rigid body motion contain displacements, velocities, 
and accelerations at the body center of mass. These components consist of 
translation and rotation in and about the orthogonal axis directions. Since the 
springs and dampers have the steady loading due to the sprung body, the steady 
state of the model can be determined. The vertical bounce and pitch responds are 
influenced by the stiffness of dampers, springs and tires. The pure bounce is 
represented by the vertical response and the pitch motion is represented by the 
rotation at its rotation center. This paper demonstrates the bounce and pitch 
phenomenon through the benchmark model of vehicle, which is analyzed for 
determining the equilibrium state. The equations for bounce and pitch plane 
motions representing the X-Z multibody system are established by using the XZBM 
algorithm. The vehicle parameters are used for the numerical computations which 
the analysis established the bounce and pitch conditions. 
Key-Words:  tires, springs, damping, bounce, pitch, steady, X-Z multibody system,  

XZBM algorithm 
 
 
 
INTRODUCTION 

In general, a vehicle model is one having multiple bodies, with each body 
being supported on a suspension represented by the tires, springs, and damping 
devices. The components of rigid body motion contain displacements, velocities, 
and accelerations at the body center of mass. These components consist of 
translation and rotation in and about the orthogonal axis directions. The axes of an 
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orthogonal system expressing the standard coordinate system [1] of a vehicle is 
shown in Figure 1., where the orthogonal axes are defined as  

 x-direction : positive forward. 
 y-direction : positive right. 
 z-direction : positive down. 

These axis directions follow the right hand rule as seen by the driver. The 
orientation of the vehicle axis system x, y, z with respect to the fixed global 
reference axis system X, Y, Z can be described by a sequence of Euler angular 
rotations. 

Vehicle velocity, therefore, is equal to the vector quantity expressing the 
velocity of a point in the sprung mass using the x, y, z axis system, relative to the 
fixed system. There are six velocity components [1]: 

 

 
Figure 1. The orthogonal axis system. 

 
1. Forward velocity is the component of the vector velocity perpendicular to the 

y-axis and parallel to the road plane ( x ).  
2. Lateral velocity is the component of the vector velocity perpendicular to the x-

axis and parallel to the road plane ( y ).  
3. Bounce velocity is the component of the vector velocity perpendicular to the 

road plane and parallel to z-axis ( z ).  
4. Roll velocity (p or  ) is the angular velocity about the x-axis. 
5. Pitch velocity (q or  ) is the angular velocity about the y-axis. 
6. Yaw velocity (r or  ) is the angular velocity about the z-axis. 

 The stability analyses of these systems have been based on the number of 
the degrees of freedom (i.e., for bounce or pitch plane, these are vertical or bounce 
motion z, pitch angle ) assumed to be involved in the dynamic analyses. 
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Basic Motion Equation 
In accordance with Euler's method, the orientation of a moved body axis 

system (x, y, z) with respect to a fixed axis system (X, Y, Z) is given by a sequence 
of three angular rotations. The sequence of rotations is started from a condition in 
which the two sets of axes are initially aligned [1] and defined to be: 

 A yaw rotation, , about the aligned z and Z-axis. 
 A pitch rotation, , about y-axis. 
 A roll rotation, , about x-axis. 

A rotational transformation matrix, in which a moved body system {B} 
rotates relative to the fixed reference frame {A}, is developed and is designated as 
the Z-Y-X rotation using the Euler angle convention [2]. The final orientation of 
{B} relative to {A} is 
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where s = sin , c = cos , s = sin, etc. 
These rotational matrices result in non-linear equations if the sine and cosine 

terms are retained. Often simplifying assumptions are made. For instance, a vehicle 
motion will pitch excessively; hence, the terms sin, sin, cos, and cos are 
usually replaced by , , 1, 1, respectively, by use of small angle theory. This has a 
consequent simplification of the system relations [3]. 

The equations of motion can be determined by using a Lagrangian approach, 
which derives a differential equation in terms of kinetic, potential, and dissipative 
energies of the system. The algorithm for obtaining the equations of motion for a 
single-body system can be easily demonstrated by a set of spring-damping systems 
placed between a moving body i and a fixed body. The rotational transformation 
matrices, obtained using Euler's angle method, along with the coordinate systems 
of the model are developed and used to verify the kinetic and potential energies, 
and also the dissipative functions.  

The Lagrangian approach to the formulation of the equations of motion can 
also alleviate some of the difficulties found in the direct application of Newton's 
laws of motion to complex systems. Lagrange's equation [3,4] may be written as 
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where T is the kinetic energy, V  is the potential energy, F is the dissipative 
function of the system, qi is the generalized coordinate, and Qi is the generalized 
force and moment. In the general equation formulation, qi becomes the generalized 
rigid body movements for body i; i.e. xi, yi, zi, i, i and i, while Qi is the 
generalized forces Fxi, Fyi, Fzi, and moments Mxi, Myi, Mzi occurring on the body. 
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X - Z Body Motion Equation 
The longitudinal distance between the axles generates a multi-input system 

that responds with pitch motions as well as vertical bounce. The pitch motions are 
generally considered as the primary source of longitudinal vibrations at locations 
around the center of gravity. The combination of pitch and bounce motions will 
determine the vertical and longitudinal vibrations at any point in the vehicle [5]. 

The vertical vibration response of the vehicle due to rigid-body motions will 
vary along the length of the vehicle, depending on the relative actions of the 
bounce and pitch motions. Near the center of rotation of the vehicle in the x - z 
plane, the vertical vibrations are affected only by bounce motion.  On most 
vehicles there is a coupling of motions in the vertical and pitch directions, such that 
there is no pure bounce or pitch modes. The analytical study treats the system as a 
rigid body supported by suspensions consisting of springs and dampers as shown in 
Figure 2. Using Figure 2, the algorithm for the x-z plane can be developed by x - z 
body motion (XZBM) algorithm [6]. 

 

 
 

Figure 2. X-Z vehicle model. 
 
 

By using the parameters in Figure 2 and XZBM algorithm, the kinetic 
energy can be expressed as the following equations. 
- The potential energy equation is 
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-The dissipative function is 
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This system has three independent variables, therefore the motion equations 

are 
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In this case, the variables ztf and ztr can be determined by computing the 

forces on the tires, if the force of front tire is (ztf + ff(t))kv3 = msgtr /(tf + tr), and the 
rear tire force is (ztr + fr(t)) kv4 = msgtf /(tf + tr), then ztf = msgtr /((tf + tr) kv3) - ff(t) 
and ztf = msgtf /((tf + tr) kv4) – fr(t). 
 
 
ANALYSIS AND DISCUSSION  

Since the springs and dampers have the steady loading due to the sprung 
body, the steady state of the model shown in Figure 2 can be determined by 
implementing the motion equations and using the Fortran program. The vertical 
bounce and pitch responds are influenced by the stiffness of dampers, springs and 
tires. The pure bounce is represented by the vertical response and the pitch motion 
is represented by the rotation at its rotation center. 
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The benchmark model of the Bombardier Iltis vehicle [7] is analyzed for 
determining the equilibrium state. Referring to the definitions of Figure 2, Frik, et 
al. [7] quantified the Bombardier Iltis vehicle.  

 
ms  = 630.0  kg I'  = 810.0  kg m2 
tf  = 0.94   m tr  = -1.047 m 
Kvf  = 24529.0 N/m Kvr               = 36975.0 N/m 
Cf  = 9945.627 N s/m Cr  = 9945.627 N s/m 
kvf  = 41641.0 N/m kvr  = 40162.0 N/m 
Ro = 0.214  m 

 
The stiffness coefficients for the dampers, springs and tires are the results of 

static equilibrium tests performed by Frik, et al. [7]. The test assumed that the tires 
produced no longitudinal or lateral forces in the equilibrium condition. However, 
the magnitudes of bounce and pitch displacements have not been determined. 
This implementation computes the equilibrium state and is represented by the 
bounce and pitch motion shown in Figure 3. The figure shows that steady state is 
reached after approximately 60 seconds. The vertical displacement, zo1, is 0.0756 m 
and the rotation, 1, equals to -0.0863 degrees 
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Figure 3. Equilibrium state of Bombardier Iltis (zero loading). 
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An input disturbance can be given to the tires through ff(t) and fr(t) during 
the steady state. This is assumed that the vehicle runs at steady speed and there is a 
disturbance on the road which is first hit by the front tire and followed by the rear 
tire. The disturbance is given as a function of time and a sine wave defined as ff(t) 
= 0.1 sin (xt) for 0.05 < t < 0.25 second and  fr(t) = 0.1 \sin (xt) for 0.25 < t < 0.45 
second as shown in Figure 4. 

 
ff(t)=fr(t)=0.1 sin(xt), dx = 10 m/s
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Figure 4. A given disturbance as input parameters of  ff(t) and  fr(t). 
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Figure 5. Bounce and pitch motions due to input parameters of ff(t) and  fr(t) 
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Figure 5 is an output in which the disturbance is shown in the "input" graph 
(figure 4) and the responses are expressed in the "bounce motion" and "pitch 
motion" graphs. The reaction of pitch motion is very significant during the 
disturbance, but sharply decreases after the disturbance ends, or t  0.45 second. 
The bounce motion sharply increases during the disturbance and smoothly 
decreases after this disturbance. 

Further analyses can be performed as well on the problem given by varying 
the disturbances depending upon the condition of the road. The simulation should 
consider the vehicle speed and the distance between the front and rear tires. 
 
 
CONCLUSION 

The equations for bounce and pitch plane motions representing the X-Z 
multibody system were established by using the XZBM algorithm. The parameters 
of Bombardier Iltis vehicle [7] are used for the numerical computations which the 
analysis established the bounce and pitch conditions. 

The algorithms are implemented into the protocols for symbolically deriving 
the motion equations which are valid to the same equations derived the other 
researchers. Besides the motion equations, the Fortran subroutines along with 
IMSL library computed the numerical analysis. The results of algorithm 
implementation have no contradiction with the study performed by the previous 
researchers.  

With the simulation method that has been done above, there needs to be 
done similar simulations with the vehicle’s input parameters adjusted in accordance 
with the condition or types of the vehicle, which is often used on highways. For 
example, the simulations are performed by using suspensions with different 
suspension characteristics, different load and different dimension. This is needed to 
know how far are the critical bounce and pitch vehicle performances from empty to 
full load during its operation in the highways. 
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