Sentiment Analysis of Public Responses on Indonesia Government Using Naïve Bayes and Support Vector Machine
Abstract
Many people are interested in knowing how the public views President Joko Widodo's administration. Text Mining analysis can be one way to collect and analyze text data about Joko Widodo's administration and extract relevant information from the data. Data was obtained by collecting tweet data about Joko Widodo's government in 2022 on Twitter using Netlyitic. Then the Text Mining analysis of Joko Widodo's government was carried out using the Navie Bayes (NVB) classification and Support Vector Machine (SVM). This classification can be used to predict sentiment or public views of the government based on the tweets collected. Based on a case study of the classification results of President Joko Widodo using Naive Bayesian classification, we obtained a precision value of 79%, a recall value of 91% and a precision value of 82%. And by using SVM, we get 85% precision, 95% recall, and 83% precision. Due to the high accuracy, recall, and precision, it can be said that SVM classification is more accurate than NVB.
Keywords
Full Text:
PDFReferences
Maria Arista Ulfa, Budi Irmawati, and Ario Yudo Husodo, “Twitter Sentiment Analysis using Na¨ıve Bayes Classifier with Mutual Information Feature Selection”.
Faisal Rahutomo,Pramana Yoga Saputra, Miftahul Agtamas Fidyawan, “IMPLEMENTASI TWITTER SENTIMENT ANALYSISUNTUK REVIEWFILM MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE”, [Online]. Available: http://jip.polinema.ac.id/ojs3/index.php/jip/article/view/152/136
Yono Cahyono, Saprudin Saprudin, “Analisis Sentiment Tweets Berbahasa Sunda Menggunakan Naive Bayes Classifier dengan Seleksi Feature Chi Squared Statistic”, [Online]. Available: http://openjournal.unpam.ac.id/index.php/informatika/article/view/3186/pdf
Mona Cindo, Dian Palupi Rini, Ermatita Ermatita, “ENTIMENT ANALYSIS ON TWITTER BY USING MAXIMUM ENTROPY AND SUPPORT VECTOR MACHINE METHOD”, [Online]. Available: https://media.neliti.com/media/publications/302062-sentiment-analysis-on-twitter-by-using-m-d2bf14a4.pdf
Fazainsyah Azka Wicaksono, Ade Romadhony, Hasmawati, “Sentiment Analysis of University Social Media Using Support Vector Machine and Logistic Regression Methods”, [Online]. Available: https://socj.telkomuniversity.ac.id/ojs/index.php/indojc/article/view/638
I Gede Cahya Purnama YasaNgurah Agus Sanjaya ER, Luh Arida Ayu Rahning Putri, “Sentiment Analysis of Snack Review Using the Naïve Bayes Method”, [Online]. Available: https://ojs.unud.ac.id/index.php/JLK/article/view/53183/33350
Normah, “Naïve Bayes Algorithm For SentimentAnalysis Windows PhoneStore Application Reviews”, [Online]. Available: https://jurnal.polgan.ac.id/index.php/sinkron/article/view/242/172
Mohammad Abdul Manan1, , Sarwido, and , Gentur Wahyu Nyipto Wibowo, “PENERAPAN ALGORITMA NAIVE BAYES UNTUK PREDIKSI HEREGISTRASI CALON MAHASISWA BARU”, [Online]. Available: https://journal.unisnu.ac.id/JTINFO/article/view/126
Imamah, Husni, Eka Malasari Rachman, Ika Oktavia Suzanti, and Fifin Ayu and Mufarroha, “Text Mining and Support Vector Machine for Sentiment Analysis of Tourist Reviews in Bangkalan Regency”, [Online]. Available: https://iopscience.iop.org/article/10.1088/1742-6596/1477/2/022023/pdf
Intania Eka Yanti, Oktariani Nurul Pratiwi and , Riska Yanu Fa’rifah, “ANALISIS RESPON MASYARAKAT TERHADAP PANDEMI COVID-19 PADA MEDIA SOSIAL TWITTER MENGGUNAKAN METODE SOCIAL NETWORK ANALYSIS”.
DOI: https://doi.org/10.18196/eist.v4i1.18681
Refbacks
- There are currently no refbacks.
Editorial Office:
EMERGING INFORMATION SCIENCE AND TECHNOLOGY
Department of Information Technology, Faculty of Engineering,
Universitas Muhammadiyah Yogyakarta.
Jln. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia
Telp:(62)274-387656, Fax.:(62)274-387656