Inflation forecasting using autoregressive distributed lag (ARDL) models

Regi Muzio Ponziani

Abstract


This study attempts to evaluate and compare the inflation-predicting performance of several ARDL models. Since there was no cointegration, the ARDL model does not employ an error correction term. Subsequently, model development showed that ARDL(2,2) should be used. Besides the formally developed model, some other more arbitrarily chosen ARDL models were also included, i.e., ARDL(1,1), ARDL(2,0), ARDL(1,0), ARDL(0,1), and ARDL(0,2). This research measures forecasting performance with inflation as the forecasting object. The duration of the monthly inflation statistics ranged from January 2011 to July 2022. The data were separated into two categories. The training data ranged between January 2011 and December 2021. After getting the appropriate parameters from the training data, the models generated projections from January 2022 to July 2022. The research determined that ARDL (1,0) was the most accurate inflation forecasting model, followed by ARDL (0,2) and formally constructed ARDL(2,2) finished in fourth place. This study suggests that the formal development of ARDL for forecasting purposes is unnecessary. Formal ARDL development is more appropriate for root cause analysis. In addition, the single autoregressive component indicates that most of the inflation value's information originated from the prior period. This suggests that the previous period's value is Indonesia's most significant predictor of inflation. The impact of greater period lags on inflation forecasting diminishes immediately.


Keywords


Forecasting; ARDL; Cointegration

Full Text:

PDF

References


Ahmed, Y. A., Rostam, B. N., & Mohammed, B. A. (2020). The Effect of Financial Crisis on Macroeconomic Variables in Iraq, Iran, and Turkey. Economic Journal of Emerging Markets, 12(1), 54-66. https://doi.org/10.20885/ejem.vol12.iss1.art5

Akbulut, H. (2022). Forecasting Inflation in Turkey: A Comparison of Time-Series and Machine-Learning Models. Economic Journal of Emerging Markets, 14(1), 55-71. http://dx.doi.org/10.20885/ejem.vol14.iss1.art5

Ali, N. S. (2023). Forecasting Pergerakan Harga Saham Indonesia Ditengah Ketidakpastian Global: Sebuah Pendekatan ARDL. Jurnal Investasi Islam, 8(1), 58-75. https://journal.iainlangsa.ac.id/index.php/jii/article/view/5896

Arintoko, & Kadarwati, N. (2022). Does Monetary Policy Respond to Macroeconomic Shocks? Evidence from Indonesia. Jurnal Ekonomi & Studi Pembangunan, 23(2), 171-188. https://doi.org/10.18196/jesp.v23i2.14881

Astuti, R. D., & Udjianto, D. W. (2022). The Impact of Monetary Policy and International Trade on Economic Growth in ASEAN-4 Countries. Signifikan: Jurnal Ilmu Ekonomi, 11(1), 175-190. https://doi.org/10.15408/sjie.v11i1.22142

Atigala, P., Maduwanthi, T., Gunathilake, V., Sathsarani, S., & Jayathilaka, R. (2022). Driving the Pulse of the Economy or the Dilution Effect: Inflation Impacting Economic Growth. PLoS ONE, 17(8). https://doi.org/10.1371/journal.pone.0273379

Azmi, U., Hadi, Z. N., & Soraya, S. (2020). ARDL Method: Forecasting Data Curah Hujan Harian. Jurnal Varian, 3(2), 73-82. https://doi.org/10.30812/varian.v3i2.627

Baybuza, I. (2018). Inflation Forecasting Using Machine Learning Methods. Russian Journal of Money and Finance, Bank of Russia, 77(4), 42-59. https://doi.org/10.31477/rjmf.201804.42

Duong, T. H. (2022). Inflation Targeting and Economic Performance over the Crisis: Evidence from Emerging Market Economies. Asian Journal of Economics and Banking, 6(3), 337-352. https://doi.org/10.1108/AJEB-05-2021-0054

Eldomiaty, T., Saeed, Y., Hammam, R., & AboulSoud, S. (2020). The Associations between Stock Prices, Inflation Rates, Interest Rates Are Still Persistent. Journal of Economics, Finance, and Administrative Science, 25(49), 149-161. http://dx.doi.org/10.1108/JEFAS-10-2018-0105

Fayziev, R. A., Khudoykulov, S. K., Rajapov, S. Z., & Axmadjonov, A. A. (2019). The Forecasting Budget Revenues in ARDL Approach: A Case of Uzbekistan. International Journal of Innovative Technologies in Economy, 1(21), 6-12. https://doi.org/10.31435/rsglobal_ijite/31012019/6330

Johari, S. M., Wong, W. K., Anjasari, I. F., Ha, N. T., & Thuong, T. T. (2022). The Effect of Monetary Instrument of Islamic Banking Financing Channel Towards The Economic Growth in Indonesia. Jurnal Ekonomi & Studi Pembangunan, 23(1), 124-139. https://doi.org/10.18196/jesp.v23i1.13198

Kelikume, I., & Salami, A. (2014). Time Series Modeling and Forecasting Inflation: Evidence from Nigeria. The International Journal of Business and Finance Research, 8(2), 41-52. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2322918

Kunaedi, A., & Darwanto. (2020). Central Bank Independence and Inflation: The Matters of Financial Development and Institutional Quality. Signifikan: Jurnal Ilmu Ekonomi, 9(1), 1-14. https://doi.org/10.15408/sjie.v9i1.12899

Kurniasih, E. P. (2019). The Long-Run and Short-Run Impacts of Investment, Export, Money Supply, and Inflation on Economic Growth in Indonesia. Ventura: Journal of Economics, Business, & Accounting, 22(1), 21-28. https://doi.org/10.14414/jebav.v22i1.1589

Kurniawan, M. L., A'yun, I. Q., & Perwithosuci, W. (2022). Money Demand in Indonesia: Does Economic Uncertainty Matter? Jurnal Ekonomi & Studi Pembangunan, 23(2), 231-244. https://doi.org/10.18196/jesp.v23i2.15876

Kusumatrisna, A. L., Sugema, I., & Pasaribu, S. H. (2022). Threshold Effect in the Relationship Between Inflation Rate and Economic Growth in Indonesia. Bulletin of Monetary Economics and Banking, 25(1), 117-132. https://doi.org/10.21098/bemp.v25i1.1045

Labibah, S., Jamal, A., & Dawood, T. C. (2021). Indonesian Export Analysis: Autoregressive Distributed Lag (ARDL) Model Approach. Journal of Economics, Business, & Accountancy Venture, 23(3), 320-328. https://doi.org/10.14414/jebav.v23i3.1668

Negara, H. R., Syahruddin, Kusuma, J. W., Saddam, Apriansyah, D., Hamidah, & Tamur, M. (2021). Computing The Auto Regressive Distributed Lag (ARDL) Method in Forecasting COVID-19 Data: A Case Study of NTB Province Until The End of 2020. Journal of Physics: Conference Series, 1882. https://doi.org/10.1088/1742-6596/1882/1/012037

Nghiem, X., & Narayan, S. (2021). What Drives Persistently High Inflationary Pressures in Vietnam? Some Evidence from the New Keynesian Curve Framework. Bulletin of Monetary Economics and Banking, 24(4), 517-540. https://doi.org/10.21098/bemp.v24i4.1766

Ningrum, D. K, & Surono, S. (2018). Comparison The Error Rate of Autoregressive Distributed Lag (ARDL) and Vector Autoregressive (VAR)(Case Study: Forecast of Export Quantities in DIY). EKSAKTA: Journal of Sciences and Data Analysis, 18(2), 167-177. https://doi.org/10.20885/eksakta.vol18.iss2.art8

Ozgur, O., & Akkoc, U. (2021). Inflation Forecasting in an Emerging Economy: Selecting Variables With Machine Learning Algorithms. International Journal of Emerging Markets, 17(8), 1889-1908. https://doi.org/10.1108/IJOEM-05-2020-0577

Pradhan, R. P., Filho, F. D., & Hall, J. H. (2014). The Impact of Stock Market Development and Inflation on Economic Growth in Indoa: Evidence Using the ARDL Bounds Testing and VECM Approaches. International Journal of Economics and Business Research, 8(2), 143-160. https://doi.org/10.1504/IJEBR.2014.064118

Prieto, A. B., & Lee, Y. (2019). Determinants of Stock Market Performance: VAR and VECM Designs in Korea and Japan. Global Business & Finance Review, 24(4), 24-44. https://doi.org/10.17549/gbfr.2019.24.4.24

Serletis, A., & Xu, L. (2021). The Welfare Cost of Inflation. Journal of Economic Dynamics and Control, 128. https://doi.org/10.1016/j.jedc.2021.104144

Setiartiti, L., & Hapsari, Y. (2019). The Determinants of Inflation Rate in Indonesia. Jurnal Ekonomi & Studi Pembangunan, 20(1), 112-123. https://doi.org/10.18196/jesp.20.1.5016

Sibuarian, M. E. (2014). Forecasting Indonesian Money Demand Function with Autoregressive Distributed Lag (ARDL) Model. JURNAL BPPK: Badan Pendidikan dan Pelatihan Keuangan, 7(2), 111-121. https://jurnal.bppk.kemenkeu.go.id/jurnalbppk/article/view/97

Sijabat, R. (2022). Examining The Impact of Economic Growth, Poverty and Unemployment on Inflation in Indonesia (2000-2019): Evidence from Error Correction Model. Jurnal Studi Pemerintahan, 13(1), 25-58. https://doi.org/10.18196/jgp.v13i1.12297

Sulistiana, I., Hidayati, & Sumar. (2017). Model Vector Auto Regression (VAR) and Vector Error Correction Model (VECM) Approach for Inflation Relations Analysis, Gross Regional Domestic Product (GDP), World Tin Price, BI Rate and Rupiah Exchange Rate. IJBE: Integrated Journal of Business and Economics, 1(2), 16-32. https://ojs.ijbe-research.com/index.php/IJBE/article/view/46

Sunal, O. (2018). CPI, Money Supply, and Exchange Rate Dynamics in Turkey: A VECM Approach. Journal of Economics, Finance, and Accounting (JEFA), 5(3), 246-260. http://doi.org/10.17261/Pressacademia.2018.934

Yadav, M. P., Khera, A., & Mishra, N. (2021). Empirical Relationship Between Macroeconomic Variables and Stock Market: Evidence from India. Management and Labour Studies, 1-11. https://doi.org/10.1177/0258042X211053166




DOI: https://doi.org/10.18196/jesp.v24i2.17620

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Regi Muzio Ponziani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


 

Office:
Redaksi JESP UMY, Gedung E2 Lantai 2, Fakultas Ekonomi dan Bisnis, Universitas Muhammadiyah Yogyakarta
Jalan Brawijaya, Tamantirto, Kasihan, Bantul, Daerah Istimewa Yogyakarta 55183
Telp: (0274) 387656 ext.184
Fax: (0274) 387646
Email: jesp@umy.ac.id


Jurnal Ekonomi & Studi Pembangunan (JESP) is licensed under Creative Commons Attribution-ShareAlike 4.0 International.