Forecasting Fisheries Production in Indonesia
Main Article Content
Abstract
Article Details
License
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Akkurt, M., Demirel, O. F., & Zaim, S. (2010). Forecasting Turkey’s Natural Gas Consumption by Using Time Series Methods. European Journal of Economic and Political Studies, 3(2), 1–21. Retrieved from https://arastirmax.com/en/system/files/dergiler/25821/makaleler/3/2/arastirmax-forecasting-turkeys-natural-gas-consumption-using-time-series-methods.pdf
Azhar, M., & Riksakomara, E. (2017). Peramalan Jumlah Produksi Ikan dengan Menggunakan Backpropagation Neural Network (Studi Kasus: UPTD Pelabuhan Perikanan Banjarmasin). Jurnal Teknik ITS, 6(1), 142–148. http://dx.doi.org/10.12962/j23373539.v6i1.22129
Box, G., & Jenkins, G. (1976). Time Series Analysis: Forecasting and Control. California: Holden-Day, Inc.
BPS-Statistics Indonesia. (2018). Quarterly Indonesian Gross Domestic Product, 2014-2018. (Sub-directorate of National Product Accounts Consolidation, Ed.). Jakarta: BPS-Statistics Indonesia.
Cocon. (2017, July). The Strategic Value of Aquaculture Fisheries in Supporting Food Security. Kompas.com. Retrieved from https://ekonomi.kompas.com/read/2017/07/24/161733226/nilai-strategis-perikanan-budidaya-dalam-menopang-ketahanan-pangan
Fitri, F., Gamayanti, N. F., & Darmawan, G. (2017). Metode SSA pada Data Produksi Perikanan Tangkap di Provinsi Jawa Barat. Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP), 9(2), 95–110. https://doi.org/10.20884/1.jmp.2017.9.2.2870
Garcia, S. (1996). Indicators for Sustainable Development of Fisheries. In the 2nd World Fisheries Congress. Rome: The United Nations. Retrieved from http://www.fao.org/3/w4745e/w4745e0f.htm
Government of the Republic of Indonesia. Fishery (2004). Indonesia. Retrieved from https://www.ilo.org/dyn/natlex/docs/ELECTRONIC/89345/102625/F765882697/IDN89345 Eng.pdf
Ilah, M. (2016). Peramalan Jumlah Ekspor Indonesia pada Kelompok Komoditi Ekspor Udang Segar/Beku Dan Tongkol/Tuna dengan Metode Arima Box-Jenkins. Thesis. Institut Teknologi Sepuluh Nopember. Retrieved from http://repository.its.ac.id/584/2/1313030017-Non_Degree.pdf
Karunarathna, B., & Karunarathna, K. A. N. K. (2017). Forecasting Fish Production in Sri Lanka by Using ARIMA Model. Scholafrs Journal of Agriculture and Veterinary Sciences, 4(9), 344–349. https://doi.org/10.21276/sjavs.2017.4.9.4
Ministry of Marine Affairs and Fisheries. (2016). Ministerial Decree Roadmap for Bureaucratic Reform of the Ministry of Maritime Affairs and Fisheries 2015-2019, Pub. L. No. 4/KEPMEN-KP/2016. Indonesia: Ministry of Marine Affairs and Fisheries. Retrieved from http://jdih.kkp.go.id/peraturan/4-kepmen-kp-2016.pdf
Ministry of Marine Affairs and Fisheries. (2019a). Aquaculture Fisheries Statistics of Indonesia. (Directorate General of Aquacculture Fisheries, Ed.). Jakarta: Ministry of Marine Affairs and Fisheries.
Ministry of Marine Affairs and Fisheries. (2019b). Capture Fisheries Statistics of Indonesia. (Directorate General of Capture Fisheries, Ed.). Jakarta: Ministry of Marine Affairs and Fisheries.
Mulyana. (2004). Analysis of Time Series Data. Bandung: Padjadjaran University.
Organization for Economic Cooperation and Development (OECD). (2013). OECD Review of Fisheries: Policies and Summary Statistics 2013. Paris: OECD Publishing. http://dx.doi.org/10.1787/rev_fish-2013-en
Raman, R. K., Sathianandan, R. T. V, Sharma, A. P., & Mohanty, B. P. (2017). Modelling and Forecasting Marine Fish Production in Odisha Using Seasonal ARIMA Model. National Academy Science Letters, 40, 393–397. https://doi.org/10.1007/s40009-017-0581-2
Suman, A., Irianto, H. E., Satria, F., & Amri, K. (2016). Potensi dan Tingkat Pemanfaatan Sumber Daya Ikan di Wilayah Pengelolaan Perikanan Negara Republik Indonesia (WPP NRI) Tahun 2015 serta Opsi Pengelolaannya. Jurnal Kebijakan Perikanan Indonesia, 8(2), 97–110. https://doi.org/10.15578/jkpi.8.2.2016.97-100
Tambunan, T. (2004). Globalisasi dan Perdagangan Internasional (Globalization and International Trade). Bogor: Penerbit Ghalia Indonesia.
Tran, N., Rodriguez, U., Chan, C. Y., Philips, M. J., Mohan, V., Henriksson, P. J. G., Koeshendrajana, S., Suri, S., & Hall, S. (2017). Indonesian Aquaculture Futures : An Analysis of Fish Supply and Demand in Indonesia to 2030 and Role of Aquaculture using the AsiaFish Model. Marine Policy, 79, 25–32. https://doi.org/10.1016/j.marpol.2017.02.002
World Wildlife Fund (WWF) Indonesia. (2018). Species. Retrieved May 25, 2020, from https://www.wwf.or.id/program/spesies/
Xie, M., Hong, G. Y., & Wohlin, C. (1998). A Study of the Exponential Smoothing Technique in Software Reliability Growth Prediction. Quality and Reliability Engineering International, 13(6), 347–353. https://doi.org/10.1002/(SICI)1099-1638(199711/12)13:6%3C347::AID-QRE116%3E3.0.CO;2-O