Forecasting Analysis of Share Price Index in Construction Companies Registered in Indonesia Stock Exchange 2015-2019

Karnila Ali

Abstract


Stock is one of the investment instruments that many investors choose, both short and long term. Meanwhile, the stock price index is an essential indicator for investors deciding whether to buy, sell, or hold the stock. This study aims to determine what methods are suitable for predicting the Stock Price Index of Construction Companies Listed on the Indonesia Stock Exchange in 2015-2019. By selecting a model that matches the existing time series data, to evaluate the results of the forecasting, the researcher uses a measure of accuracy with Mean Absolute Percentage Error (MAPE), Mean Absolute Deviation (MAD), and Mean Squared Deviation (MSD). This type of research is a quantitative study with a research population of 16 companies listed on the Indonesia Stock Exchange. Only four samples were used that fit the specified criteria, and only five years of research were conducted, namely in 2015 to 2019. data can be seen from historical data or actual data and tested using Minitab software version 19. The results showed that Double Exponential Smoothing (Holt's) and Double Moving Average Method could be used to forecast the Construction Company Stock Price Index. Obtaining the smallest error value of the four construction companies, namely WSKT company with MAPE = 7.3, MAD = 148.8, and MSD = 40506.0 for the Holt'sand MAPE method = 5.3, MAD = 110.1, and MSD = 22006.9 for the Double Moving Average method.


Keywords


Forecasting; Stock Price Index; Double Exponential Smoothing (Holt's); Double Moving Average; MAPE; MAD; MSD

Full Text:

PDF

References


Armstrong, J. S. (2005). The forecasting canon: nine generalizations to improve forecast accuracy. Retrieved from http://repository.upenn.edu/marketing_papers/35

Bachtiar, M.A. (2013). Analisis perbandingan forecasting harga saham dengan pendekatan artificial neural network dan metode box – Jenkis Arima (Study dalam forecasting harga saham LQ-45 yang terdaftar di Bursa Efek Indonesia). Skripsi. Universitas Indonesia.

Fahmi, I. (2012). Analisis Laporan Keuangan. Bandung: Alfabeta.

Gigerenzer, G., & Goldstein, D. G. (2011). The recognition heuristic: A decade of research. Judgment and Decision Making, Society for Judgment and Decision Making, 6(1), 100-121

Jonnius, J. (2016). Peramalan index harga saham sektoral dengan pendekatan exponential smoothing model. Kutubkhanah: Jurnal Penelitian sosial keagamaan,19(2), 1-21. Retrieved from http://ejournal.uin-suska.ac.id/index.php/Kutubkhanah/article/view/2551

Kasmir & Jakfar. (2015). Studi Kelayakan Bisnis. Jakarta: Kencana Prenada Media Group.

Nafitry, R. (2010). Penerapan metode peramalan sebagai dasar penentu tingkat kebutuhan safety stock pada industri elektronik. Skripsi. Universitas Indonesia.

Putri, R.N., & Setiawan, S. (2015). Peramalan index harga saham perusahaan financial LQ-45 menggunakan metode Autoregressive Integrated Moving Average (ARIMA) dan Vector Autoregressive (VAR). Jurnal Sains dan Seni ITS, 4(2), 1-20. Retrieved from http://ejurnal.its.ac.id/index.php/sains_seni/article/view/11162

Rachman, R. (2018). Penerapan metode moving average dan exponential smoothing pada peramalan produksi industri garment. Jurnal Informatika, 5(2), 211–220. https://doi.org/10.31294/ji.v5i2.3309

Render & Heizer. (2009). Manajemen Operasi. Jakarta: Salemba Empat.

Song, H., Smeral, E., Li, G., & Chen, J. L. (2013). 21. Tourism forecasting using econometric models. Trends in European Tourism Planning and Organisation, 289–310. https://doi.org/10.21832/9781845414122-025

Sriyana, J. (2015). Metode regresi data panel. Yogyakarta: Ekonisia.




DOI: https://doi.org/10.18196/jerss.v5i1.11044

Refbacks

  • There are currently no refbacks.




Office:
Redaksi Journal of Economics Research and Social Sciences, Gedung E2 Lantai 2, Fakultas Ekonomi dan Bisnis, Universitas Muhammadiyah Yogyakarta
Jalan Brawijaya, Tamantirto, Kasihan, Bantul, Daerah Istimewa Yogyakarta 55183

Email: jerss@umy.ac.id

Telp: +62 812-3233-6697


Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.