The Chemopreventive Effects of The Combination Between Tea Leaf and Mandarine Peel Extract on Breast Cancer Cell
Abstract
The number of breast cancer patients is increasing high in the world. This study aims to determine the chemopreventive effect of a combination of ethanolic extracts of tea leaves and mandarin peel in silico and in vitro on T47D breast cancer cells. Extraction by the maceration method used ethanol solvent 70%. The research is an in silico molecular docking utilized software of Autodock Vina to determine the binding affinity of tangeretin compounds and Epigallocatechin gallate (EGCG) on HER-2 protein. The antioxidant test used the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method to determine the antioxidant activity of the combination of tea leaf and mandarine peel (CTM) extract. The in vitro test used the method of 3-(4,5-dimethyltiazol-2-il) -2,5-diphenyltetrazolium bromide (MTT) to determine the value of IC50 fromCTM on T47D breast cancer cells. The result of this study showed that CTM had a vigorous antioxidant activity with an IC50 value of 83 μg/ml. CTM had a weak cytotoxic activity with an IC50 value of 1889 μg/ml. Molecular tethering results of tangeretin and EGCG compounds produced a docking score of -6.6 and -5.0 kcal/mol with docking score proportion consisting of -4.9 kcal/mol of original ligand, -6.1 kcal/mol of doxorubicin and -4.5 kcal/mol of 5-fluorouracil. CTM had potential as a chemopreventive agent based on the robust antioxidant activity data on T47D breast cancer cells and molecular docking on the HER-2 protein.
Keywords
Full Text:
PDFReferences
Waks, A. G., & Winer, E. P. (2019). Breast cancer treatment: a review. Jama, 321(3), pp. 288-300.
Chatterjee, S., Mukherjee, M. M., Nath, N. C., Samanta, S., & Saha, A. K. (2017). An observational study on the incidence of HER-2/neu receptor over-expression and comparison of clinical presentation between HER-2/neu positive and HER-2/neu negative breast cancer. International Surgery Journal, 4(2), pp. 506-513.
Miedema, J., & Andea, A. A. (2020). Through the looking glass and what you find there: making sense of comparative genomic hybridization and fluorescence in situ hybridization for melanoma diagnosis. Mod Pathol 33, pp. 1318–1330.
Amirifard, N., Sadeghi, E., Payandeh, M., Mohebbi, H., Sadeghi, M., & Choubsaz, M. (2016). Relationship between HER2 proto-oncogene status and prognostic factors of breast cancer in the west of Iran. Asian Pac J Cancer Prev, 17(1), pp. 295-298.
Márquez-Garbán, D. C., Gorrín-Rivas, M., Chen, H. W., Sterling Jr, C., Elashoff, D., Hamilton, N., & Pietras, R. J. (2019). Squalamine blocks tumor-associated angiogenesis and growth of human breast cancer cells with or without HER-2/neu overexpression. Cancer letters, 449, pp. 66-75.
Anastasiadi, Z., Lianos, G. D., Ignatiadou, E., Harissis, H. V., & Mitsis, M. (2017). Breast cancer in young women: an overview. Updates in surgery, 69(3), pp. 313-317.
Mulder, R. L., Van Der Pal, H. J. H., Levitt, G. A., Skinner, R., Kremer, L. C. M., Brown, M. C., ... & Frey, E. (2016). Transition guidelines: an important step in the future care for childhood cancer survivors. A comprehensive definition as groundwork. European Journal of Cancer, 54, pp. 64-68.
Rodríguez-García, C., Sánchez-Quesada, C., & Gaforio, J. J. (2019). Dietary flavonoids as cancer chemopreventive agents: An updated review of human studies. Antioxidants, 8(5), 137. pp. 1-23.
Surichan, S., Arroo, R. R., Tsatsakis, A. M., & Androutsopoulos, V. P. (2018). Tangeretin inhibits the proliferation of human breast cancer cells via CYP1A1/CYP1B1 enzyme induction and CYP1A1/CYP1B1–mediated metabolism to the product 4′ hydroxy tangeretin. Toxicology in Vitro, 50, pp. 274-284.
Khopkar, S. M. (2014). Konsep Dasar Kimia Analitik. Penerjemah: Saptorahardjo, A. Jakarta: Universitas Indonesia.
Azwanida, N. N. (2015). A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med Aromat Plants, 4(196), pp. 2167-0412.
Ialongo, C. (2017). Preanalytic of total antioxidant capacity assays performed in serum, plasma, urine and saliva. Clinical Biochemistry, 50(6), pp. 356-363.
Mittal, L., Raman, V., Camarillo, I. G., & Sundararajan, R. (2017). Electrical pulse-mediated veliparib for effective treatment of triple negative breast cancer: an in vitro model study. Int. J. of Curr. Res. and Academic Review, 5, pp. 53-64.
Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nature protocols, 11(5), pp. 905-919.
Dungir, S. G., Katja, D. G., & Kamu, V. S. (2012). Aktivitas antioksidan ekstrak fenolik dari kulit buah manggis (Garcinia mangostana L.). Jurnal MIPA, 1(1), pp. 11-15.
Rahardjo, T. B. W., & Purwaningsih, E. H. (2017). Life Cycle Concept. The Power Of Jamu (English Version), 85.
Cheemanapalli, S., Chinthakunta, N., Shaikh, N. M., Shivaranjani, V., Pamuru, R. R., & Chitta, S. K. (2019). Comparative binding studies of curcumin and tangeretin on up-stream elements of NF-kB cascade: a combined molecular docking approach. Network Modeling Analysis in Health Informatics and Bioinformatics, 8(1), p. 15.
Shi, X., Zhang, T., Li, X., Feng, Y., Tan, X., & Jin, Y. (2016). Interaction between tangeretin and ovalbumin to reduce the allergic effects of ovalbumin. Chemical Research in Chinese Universities, 32(4), pp. 556-560.
Surichan, S., Arroo, R. R., Tsatsakis, A. M., & Androutsopoulos, V. P. (2018). Tangeretin inhibits the proliferation of human breast cancer cells via CYP1A1/CYP1B1 enzyme induction and CYP1A1/CYP1B1–mediated metabolism to the product 4′ hydroxy tangeretin. Toxicology in Vitro, 50, pp. 274-284.
Briguglio, M., Hrelia, S., Malaguti, M., Serpe, L., Canaparo, R., Dell’Osso, B., ... & Banfi, G. (2018). Food bioactive compounds and their interference in drug pharmacokinetic/pharmacodynamic profiles. Pharmaceutics, 10(4), p. 277.
Peter, B., Bosze, S., & Horvath, R. (2017). Biophysical characteristics of proteins and living cells exposed to the green tea polyphenol epigallocatechin-3-gallate (EGCg): review of recent advances from molecular mechanisms to nanomedicine and clinical trials. European Biophysics Journal, 46(1), pp. 1-24.
Meiyanto, E., & Hermawan, A. (2012). Natural products for cancer-targeted therapy: citrus flavonoids as potent chemopreventive agents. Asian Pacific journal of cancer prevention: APJCP, 13(2), p. 427.
Chahar, M. K., Sharma, N., Dobhal, M. P., & Joshi, Y. C. (2011). Flavonoids: A versatile source of anticancer drugs. Pharmacognosy reviews, 5(9), p. 1.
Tung, Y. C., Chou, Y. C., Hung, W. L., Cheng, A. C., Yu, R. C., Ho, C. T., & Pan, M. H. (2019). Polymethoxyflavones: Chemistry and Molecular Mechanisms for Cancer Prevention and Treatment. Current Pharmacology Reports, 5(2), pp. 98-113.
DOI: https://doi.org/10.18196/jfaps.010101
Refbacks
- There are currently no refbacks.
Journal of Fundamental and Applied Pharmaceutical Science are indexed by:
Office:
Journal of Fundamental and Applied Pharmaceutical Science is licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.