Pirolisis Campuran PET dan LDPE Menggunakan Oven Microwave

Novi Caroko

Abstract


Meningkatnya kebutuhan manusia terhadap produk plastik khususnya yang berbahan PET dan LDPE berdampak pada sampah yang dihasilkan. Penelitian ini bertujuan mengetahui pengaruh daya keluaran microwave (600 W dan 800 W) pada proses microwave-assisted pyrolysis sampah PET dan LDPE. Penelitian ini mencakup tiga langkah: preparasi sampel, analisis termogravimetri, dan analisis studi kinetik. Hasil studi kinetik menunjukan bahwa peningkatan daya keluaran microwave mengakibatkan peningkatan temperatur maksimum, laju kenaikan temperatur, laju kehilangan massa, dan nilai kalor. Energi aktivasi pirolisis LDPE lebih rendah dibandingkan PET. Hasil uji GC-MS menunjukan pyrolytic oil PET didominasi oleh senyawa asetaldehid, sedangkan pada LDPE didominasi senyawa fenol. Daya keluaran microwave paling efektif yang digunakan untuk memperoleh pyrolytic oil dari PET adalah 800 W, sedangkan LDPE adalah 600 W.


Keywords


microwave; pyrolysis; PET; LDPE

Full Text:

PDF

References


G. Fitriyano dan D. Ar, “Tinjauan Singkat Potensi Pemanfaatan Botol Bekas Berbahan Polyethylene Terephthalate ( PET ) di Indonesia A Short Review on Potential of Utilization Used Bottle Made from Polyethylene Terephthalate ( PET ) in Indonesia,” vol. 16, no. 1, hal. 18–24, 2019.

J. R. Jambeck, Q. Ji, Y.-G. Zhang, D. Liu, D. M. Grossnickle, dan Z.-X. Luo, “Plastic waste inputs from land into the ocean,” Science (80-. )., vol. 347, no. 6223, hal. 764–768, 2015.

Y. Liang, Q. Tan, Q. Song, dan J. Li, “An analysis of the plastic waste trade and management in Asia,” Waste Manag., vol. 119, hal. 242–253, 2021.

D. J. Kim dan K. T. Lee, “Determination of monomers and oligomers in polyethylene terephthalate trays and bottles for food use by using high performance liquid chromatography- electrospray ionization-mass spectrometry,” Polym. Test., vol. 31, no. 3, hal. 490–499, 2012.

Y. Y. Teh, K. T. Lee, W. H. Chen, S. C. Lin, H. K. Sheen, dan I. S. Tan, “Dilute sulfuric acid hydrolysis of red macroalgae Eucheuma denticulatum with microwave-assisted heating for biochar production and sugar recovery,” Bioresour. Technol., vol. 246, hal. 20–27, 2017.

O. D. Dacres et al., “Pyrolysis kinetics of biomasses pretreated by gas-pressurized torrefaction,” Energy Convers. Manag., vol. 182, no. September 2018, hal. 117–125, 2019.

M. V. Gil, M. P. González-Vázquez, R. García, F. Rubiera, dan C. Pevida, “Assessing the influence of biomass properties on the gasification process using multivariate data analysis,” Energy Convers. Manag., vol. 184, no. December 2018, hal. 649–660, 2019.

B. Zhang, H. Feng, Z. He, S. Wang, dan H. Chen, “Bio-oil production from hydrothermal liquefaction of ultrasonic pre-treated Spirulina platensis,” Energy Convers. Manag., vol. 159, no. October 2017, hal. 204–212, 2018.

F. Motasemi dan A. G. Gerber, “Multicomponent conjugate heat and mass transfer in biomass materials during microwave pyrolysis for biofuel production,” Fuel, vol. 211, no. March 2017, hal. 649–660, 2018.

S. D. Anuar Sharuddin, F. Abnisa, W. M. A. Wan Daud, dan M. K. Aroua, “A review on pyrolysis of plastic wastes,” Energy Convers. Manag., vol. 115, hal. 308–326, 2016.

S. S. Lam, W. A. Wan Mahari, A. Jusoh, C. T. Chong, C. L. Lee, dan H. A. Chase, “Pyrolysis using microwave absorbents as reaction bed: An improved approach to transform used frying oil into biofuel product with desirable properties,” J. Clean. Prod., vol. 147, hal. 263–272, 2017.

Y. F. Huang, P. Te Chiueh, W. H. Kuan, dan S. L. Lo, “Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics,” Energy, vol. 100, hal. 137–144, 2016.

W. H. Chen, S. C. Ye, dan H. K. Sheen, “Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating,” Bioresour. Technol., vol. 118, hal. 195–203, 2012.

C. Yin, “Microwave-assisted pyrolysis of biomass for liquid biofuels production,” Bioresour. Technol., vol. 120, hal. 273–284, 2012.

Y. F. Huang, W. H. Kuan, C. C. Chang, dan Y. M. Tzou, “Catalytic and atmospheric effects on microwave pyrolysis of corn stover,” Bioresour. Technol., vol. 131, hal. 274–280, 2013.

“© 1964 Nature Publishing Group,” 1964.

F. Motasemi dan M. T. Afzal, “A review on the microwave-assisted pyrolysis technique,” Renew. Sustain. Energy Rev., vol. 28, hal. 317–330, 2013.

N. Caroko, H. Saptoadi, dan T. A. Rohmat, “Kinetics of Microwave Co-Pyrolysis of Palm Oil Industry Solid Waste and Polyethylene Terephthalate Waste,” vol. 1, no. 1, hal. 72–82, 2020.

J. Alongi, G. Camino, dan G. Malucelli, “Heating rate effect on char yield from cotton, poly(ethylene terephthalate) and blend fabrics,” Carbohydr. Polym., vol. 92, no. 2, hal. 1327–1334, 2013.

O. Cepeliogullar dan A. E. Putun, “Utilization of Two Different Types of Plastic Wastes from Daily and Industrial Life,” J. Selcuk Univ. Nat. Appl. Sci., hal. 694–706, 2013.

R. Bagri dan P. T. Williams, “Catalytic pyrolysis of polyethylene,” J. Anal. Appl. Pyrolysis, vol. 63, no. 1, hal. 29–41, 2002.

A. B. Namazi, D. G. Allen, dan C. Q. Jia, “ScienceDirect Microwave-assisted pyrolysis and activation of pulp mill sludge,” Biomass and Bioenergy, vol. 73, hal. 217–224, 2014.

Selpiana, T. Aprianti, D. Pramayuda, dan D. S. Ismoro, “The ratio Influence of the polystyrene mixture and heating rate towards yield and pyrolysis results compound,” IOP Conf. Ser. Earth Environ. Sci., vol. 298, no. 1, 2019.

N. Nuryosuwito, S. Soeparman, W. Wijayanti, dan M. Sasongko, “Pengaruh Campuran Sampah Plastik dengan Katalis Alam terhadap Hasil Produk Pyrolisis,” J. Rekayasa Mesin, vol. 9, no. 2, hal. 85–91, 2018.

A. I. Osman, C. Farrell, A. H. Al-Muhtaseb, A. S. Al-Fatesh, J. Harrison, dan D. W. Rooney, “Pyrolysis kinetic modelling of abundant plastic waste (PET) and in-situ emission monitoring,” Environ. Sci. Eur., vol. 32, no. 1, 2020.

I. Çit, A. Sinaǧ, T. Yumak, S. Uçar, Z. Misirlioǧlu, dan M. Canel, “Comparative pyrolysis of polyolefins (PP and LDPE)and PET,” Polym. Bull., vol. 64, no. 8, hal. 817–834, 2010.

L. Fan, P. Ma, dan Y. Liang, “Chemical recycling of waste polystyrene,” Petrochemical Technol., vol. 33, no. 12, hal. 1198–1203, 2004.

Wahyudiono, M. Sasaki, dan M. Goto, “Recovery of phenolic compounds through the decomposition of lignin in near and supercritical water,” Chem. Eng. Process. Process Intensif., vol. 47, no. 9–10, hal. 1609–1619, 2008.

C. L. Yaws, Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds: Physical, Thermodynamic and Transport Properties for 5,000 Organic Chemical Compounds. McGraw-Hill, 2003.

T. W. G. Solomons dan C. B. Fryhle, Organic Chemistry, 10 ed. John Wiley & Sons, 2009.




DOI: https://doi.org/10.18196/jmpm.v5i1.11947

Refbacks

  • There are currently no refbacks.


 


Editorial Office :

JMPM (Jurnal Material dan Proses Manufaktur)

Department of Mechanical Engineering, Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.

Jl. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia

Email: jmpm@umy.ac.id

 (62)274-387656     (62)274-387656