Pengaruh Variasi Temperatur Tuang pada Pengecoran Daur Ulang Al-Si terhadap Struktur Mikro dan Kekerasan dengan Pola Styrofoam

Helmy Purwanto, Darmanto Darmanto, Nur Kholis, Wahid Mufidin

Abstract


Penelitian ini bertujuan mengetahui pengaruh temperatur tuang pada pengecoran daur ulang Al-Si terhadap struktur mikro dan kekerasan dengan menggunakan pola Styrofoam. Material aluminium dari velg bekas diplih sebagai bahan utama dalam penelitian ini. Parameter yang digunakan dalam pengecoran adalah temperatur tuang dengan variasi 660, 710, dan 760oC. Pengamatan struktur mikro dan pengukuran SDAS menggunakan mikroskop optic dan image analysis software. Pengujian kekerasan dilakukan untuk mengetahui sifat mekanis material. Hasil pengujian menunjukkan SDAS semakin kasar atau meningkat 56 % pada temperatur tuang 760o C sehingga mengalami peningkatan kekuatan mekanik sebesar 2.59%.


Keywords


Pengecoran Al; Struktur Mikro; Kekerasan

Full Text:

PDF

References


K. Paramasivam, M. Vijay Anand, and M. Sambathkumar, “Investigation of optimum process parameter of lost foam casting of A356/SiC metal matrix composite,” Materials Today: Proceedings., no. xxxx, 2021, doi: 10.1016/j.matpr.2021.06.035.

S. Otarawanna and A. K. Dahle, “Casting of aluminium alloys,” Fundamentals of Aluminium Metallurgy: Production, Processing and Applications., pp. 141–154, 2010, doi: 10.1533/9780857090256.1.141.

S. Shivkumar, S. Ricci, C. Keller, and D. Apelian, “Effect of solution treatment parameters on tensile properties of cast aluminum alloys,” Journal of Heat Treating., vol. 8, no. 1, pp. 63–70, 1990, doi: 10.1007/BF02833067.

F. Ettemeyer et al., “Characterisation of the decoring behaviour of inorganically bound cast-in sand cores for light metal casting,” Journal of Materials Processing Technology., vol. 296, no. October 2020, 2021, doi: 10.1016/j.jmatprotec.2021.117201.

J. Baasch, L. Windisch, F. Koch, S. Linke, E. Stoll, and C. Schilde, “Regolith as substitute mold material for aluminum casting on the Moon,” Acta Astronautica., vol. 182, no. September 2020, pp. 1–12, 2021, doi: 10.1016/j.actaastro.2021.01.045.

M. Karimian, A. Ourdjini, M. H. Idris, and H. Jafari, “Effects of Casting Parameters on Shape Replication and Surface Roughness of LM6 Aluminium Alloy Cast Using Lost Foam Process,” Transactions of the Indian Institute of Metals., vol. 68, no. 2, pp. 211–217, 2015, doi: 10.1007/s12666-014-0446-z.

S. M. Emami, M. Divandari, E. Hajjari, and H. Arabi, “Comparison between conventional and lost foam compound casting of Al/Mg light metals,” International Journal of Cast Metals Research., vol. 26, no. 1, pp. 43–50, 2013, doi: 10.1179/1743133612Y.0000000037.

M. Khodai and N. Parvin, “Pressure measurement and some observation in lost foam casting,” Journal of Materials Processing Technology., vol. 206, no. 1–3, pp. 1–6, 2008, doi: 10.1016/j.jmatprotec.2007.11.309.

S. Mozammil, J. Karloopia, and P. K. Jha, “Investigation of porosity in Al casting,” Materials Today: Proceedings., vol. 5, no. 9, pp. 17270–17276, 2018, doi: 10.1016/j.matpr.2018.04.138.

P. S. Wang, S. L. Lee, J. C. Lin, and M. Ten Jahn, “Effects of solution temperature on mechanical properties of 319.0 aluminum casting alloys containing trace beryllium,” Journal of Materials Research., vol. 15, no. 9, pp. 2027–2035, 2000, doi: 10.1557/JMR.2000.0291.

S. Sivananthan, K. Ravi, and S. J. Samuel, “Effect of SiC particles reinforcement on mechanical properties of aluminium 6061 alloy processed using stir casting route,” Materials Today: Proceedings., vol. 21, pp. 968–970, 2020, doi: 10.1016/j.matpr.2019.09.068.

H. Zhan and B. Hu, “Analyzing the microstructural evolution and hardening response of an Al-Si-Mg casting alloy with Cr addition,” Materials Characterization., vol. 142, no. May, pp. 602–612, 2018, doi: 10.1016/j.matchar.2018.06.026.

ASTM standard 407-07, “ASTM 407-07, Standard Practice for Microetching Metals and Alloys, ASTM International, West Conshohocken, PA, 2007,” pp. 1–21, 2005, doi: 10.1520/E0407-07.2.

E. Vandersluis and C. Ravindran, “Comparison of Measurement Methods for Secondary Dendrite Arm Spacing,” Metallography, Microstructure, and Analysis., vol. 6, no. 1, pp. 89–94, 2017, doi: 10.1007/s13632-016-0331-8.

G. K. Sigworth, “Fundamentals of solidification in aluminum castings,” International Journal of Metalcasting., vol. 8, no. 1, pp. 7–20, 2014, doi: 10.1007/BF03355567.

H. Cao et al., “Effect of vacuum degree and T6 treatment on the microstructure and mechanical properties of Al–Si–Cu alloy die castings,” Vacuum, vol. 172, no. October 2019, 2020, doi: 10.1016/j.vacuum.2019.109063.

V. A. Aranda, I. A. Figueroa, G. González, J. A. García-Hinojosa, and I. Alfonso, “Study of the microstructure and mechanical properties of Al-Si-Fe with additions of chromium by suction casting,” Journal of Alloys and Compounds., vol. 853, 2021, doi: 10.1016/j.jallcom.2020.157155.

V. Dao, S. Zhao, W. Lin, and C. Zhang, “Effect of process parameters on microstructure and mechanical properties in AlSi9Mg connecting-rod fabricated by semi-solid squeeze casting,” Materials Science and Engineering. A, vol. 558, pp. 95–102, 2012, doi: 10.1016/j.msea.2012.07.084.

S. B. Bin, S. M. Xing, L. M. Tian, N. Zhao, and L. Li, “Influence of technical parameters on strength and ductility of AlSi9Cu3 alloys in squeeze casting,” [1] K. Paramasivam, M. Vijay Anand, and M. Sambathkumar, “Investigation of optimum process parameter of lost foam casting of A356/SiC metal matrix composite,” Transactions of Nonferrous Metals Society of China (English Edition)., no. xxxx, 2021, doi: 10.1016/j.matpr.2021.06.035.

E. J. Vinarcik, High integrity die casting processes. John Wiley & Sons, 2002.




DOI: https://doi.org/10.18196/jmpm.v5i1.12441

Refbacks

  • There are currently no refbacks.


 


Editorial Office :

JMPM (Jurnal Material dan Proses Manufaktur)

Department of Mechanical Engineering, Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.

Jl. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia

Email: jmpm@umy.ac.id

 (62)274-387656     (62)274-387656    0895358065162