Identification of Mechanical Strength for Mixture of Thermoset Polyester with Thermoset Vinyl Ester due to Bending Load

Nusyirwan Adnan, H. Abral, Dahlan H, E. Staria

Abstract


Pada penelitian ini dilakukan upaya untuk meningkatkan ketangguhan mekanis Unsaturated Polyester (UP) dengan menambahkan Thermoset Vinyl Ester (VE) dan Methyl Methacrylate (MMA). Untuk menunjukkan tingkat ketangguhan material dilakukan pengujian dengan memberikan beban lentur sampai material tersebut putus. Hasil pengujian menunjukkan bahwa campuran 40 % wt VE dan 10% wt MMA pada material UP menghasilkan peningkatan sifat ketangguhan material dari pengujian bending stress pada spesimen dengan variasi komposisi polyester dan vinyl ester dengan hand lay-up. Nilai tegangan lentur tertinggi terdapat pada komposisi 60% polyester dan 40% vinyl ester yaitu sebesar 126,88 MPa (meningkat 16 % dari polyester murni).


In this study, an attempt was made to increase the mechanical toughness of unsaturated polyester (UP) by adding Thermoset Vinyl Ester (VE) and Methyl Methacrylate (MMA). A test is carried out to show the level of toughness of the mechanical properties of the above material by applying a flexural load until the material breaks. The test results showed that a mixture of 40% wt VE and 10% wt MMA in UP material resulted in an increase in the toughness properties of the material from the bending stress test on specimens with variations in the composition of polyester and vinyl ester with hand lay-up. The highest flexural stress value is found in the composition of 60% polyester and 40% vinyl ester, which is 126.88 MPa (an increase of 16% from pure polyester).


Keywords


Toughness; polyester Vinyl Ester blends.

Full Text:

PDF

References


REFERENCES

H. Adam, "Carbon fiber in automotive applications," Mater. Des., vol. 18, no. 4–6, pp. 349–355, 1997, DOI: 10.1016/s0261-3069(97)00076-9.

H. Abral et al., “Improving impact, tensile and thermal properties of thermoset unsaturated polyester via mixing with thermoset vinyl ester and methyl methacrylate,” Polym. Test., vol. 81, p. 106193, 2020, DOI: 10.1016/j.polymertesting.2019.106193.

M. T. Albdiry and B. F. Yousif, “Toughening of brittle polyester with functionalized halloysite nanocomposites,” Compos. Part B Eng., vol. 160, no. October 2018, pp. 94–109, 2019, DOI: 10.1016/j.compositesb.2018.10.032.

M. T. Albdiry, B. F. Yousif, and H. Ku, “Fracture toughness and toughening mechanisms of unsaturated polyester-based clay nanocomposites,” 13th Int. Conf. Fract. 2013, ICF 2013, vol. 5, pp. 3446–3455, 2013.

G. R. Arpitha, M. R. Sanjay, and B. Yogesha, “Review on Comparative Evaluation of Fiber Reinforced Polymer Matrix Composites,” Adv. Eng. Appl. Sci. An Int. J., vol. 4, no. 4, pp. 44–47, 2014.

R. Masoodi, R. E. Hajjar, K. M. Pillai, A. Javadi, and R. Sabo, “An experimental study on crack propagation in green composites made from cellulose nanofibers and epoxy,” Int. SAMPE Tech. Conf., no. February 2016, 2011.

C. Miao et al., "Superior crack initiation and growth characteristics of cellulose nano papers," Cellulose, vol. 27, no. 6, pp. 3181–3195, 2020, DOI: 10.1007/s10570-020-03015-x.

H. Ardhyananta et al., “Mechanical and Thermal Properties of Unsaturated Polyester/Vinyl Ester Blends Cured at Room Temperature,” IOP Conf. Ser. Mater. Sci. Eng., vol. 202, no. 1, 2017, DOI: 10.1088/1757-899X/202/1/012088.

A. Mahyudin, S. Arief, H. Abral, Emriadi, M. Muldarisnur, and M. P. Artika, “Mechanical properties and biodegradability of areca nut fiber-reinforced polymer blend composites,” Evergreen, vol. 7, no. 3, pp. 366–372, 2020, DOI: 10.5109/4068618.

M. L. Chan, K. T. Lau, T. T. Wong, M. P. Ho, and D. Hui, “Mechanism of reinforcement in a nanoclay/polymer composite,” Compos. Part B Eng., vol. 42, no. 6, pp. 1708–1712, 2011, doi: 10.1016/j.compositesb.2011.03.011.

C. V. Opelt, G. M. Cândido, and M. C. Rezende, "Fractographic study of damage mechanisms in fiber-reinforced polymer composites submitted to uniaxial compression," Eng. Fail. Anal., vol. 92, no. June, pp. 520–527, 2018, DOI: 10.1016/j.engfailanal.2018.06.009.

A. T. Seyhan, M. Tanoǧlu, and K. Schulte, “Tensile mechanical behavior and fracture toughness of MWCNT and DWCNT modified vinyl-ester/polyester hybrid nanocomposites produced by 3-roll milling,” Mater. Sci. Eng. A, vol. 523, no. 1–2, pp. 85–92, 2009, DOI: 10.1016/j.msea.2009.05.035.

Q. Meng and T. Wang, “An improved crack-bridging model for rigid particle-polymer composites,” Eng. Fract. Mech., vol. 211, no. January, pp. 291–302, 2019, DOI: 10.1016/j.engfracmech.2019.02.028.

R. Mao et al., “Comparison of fracture properties of cellulose nanopaper, printing paper and buckypaper,” J. Mater. Sci., vol. 52, no. 16, pp. 9508–9519, 2017, DOI: 10.1007/s10853-017-1108-4.

Nusyirwan, H. Abral, M. Hakim, and R. Vadia, “The potential of rising husk fiber/native sago starch reinforced biocomposite to automotive component,” IOP Conf. Ser. Mater. Sci. Eng., vol. 602, no. 1, 2019, DOI: 10.1088/1757-899X/602/1/012085.

a Standard, “Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials,” Annu. B. ASTM Stand., vol. 99, no. Reapproved, pp. 1–9, 1996, DOI: 10.1520/D5045-99R07E01.2.

S. Magami and J. Guthrie, "Amino resin crosslinked can coatings," Surf. Coat. Int, vol. 95, no. 2, pp. 64–73, 2012.

M. Davallo, H. Pasdar, and M. Mohseni, “Mechanical properties of unsaturated polyester resin,” Int. J. ChemTech Res., vol. 2, no. 4, pp. 2113–2117, 2010.

Y. Ju et al., “Visualization method for stress-field evolution during rapid crack propagation using 3D printing and photoelastic testing techniques,” Sci. Rep., vol. 8, no. 1, pp. 1–10, 2018, DOI: 10.1038/s41598-018-22773-0.

N. Hiremath, S. Young, H. Ghossein, D. Penumadu, U. Vaidya, and M. Theodore, “Low cost textile-grade carbon-fiber epoxy composites for automotive and wind energy applications,” Compos. Part B Eng., vol. 198, no. May, p. 108156, 2020, doi: 10.1016/j.compositesb.2020.108156.

C. Feng, S. Kitipornchai, and J. Yang, “Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs),” Compos. Part B Eng., vol. 110, pp. 132–140, 2017, DOI: 10.1016/j.compositesb.2016.11.024.

B. B. Rath and J. J. Vittal, “Mechanical Bending and Modulation of Photoactuation Properties in a One-Dimensional Pb(II) Coordination Polymer,” Chem. Mater., vol. 33, no. 12, pp. 4621–4627, 2021, doi: 10.1021/acs.chemmater.1c01124.

M. Mandhakini, S. Devaraju, M. R. Venkatesan, and M. Alagar, “Linseed vinyl ester fatty amide toughened unsaturated polyester- bismaleimide composites,” High Perform. Polym., vol. 24, no. 3, pp. 237–244, 2012, DOI: 10.1177/0954008311436263.

S. Table and S. Table, “IR Tables, UCSC Table 1. Characteristic IR Absorption Peaks of Functional Groups * Vibration Alkanes,” pp. 1–6.

A. Budiman and S. Sugiman, “Karakteristik Sifat Mekanik Komposit Serat Bambu Resin Polyester Tak Jenuh Dengan Filler Partikel Sekam,” Din. Tek. Mesin, vol. 6, no. 1, pp. 76–82, 2016, doi: 10.29303/d.v6i1.28.

Z. Yang, H. Peng, W. Wang, and T. Liu, “Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites,” J. Appl. Polym. Sci., vol. 116, no. 5, pp. 2658–2667, 2010, DOI: 10.1002/app.

A. A. Betelie, Y. T. Megera, D. T. Redda, and A. Sinclair, “Experimental investigation of fracture toughness for treated sisal epoxy composite,” AIMS Mater. Sci., vol. 5, no. 1, pp. 93–104, 2018, DOI: 10.3934/matersci.2018.1.93.

H. N. Dhakal and S. O. Ismail, Unsaturated polyester resins: Blends, interpenetrating polymer networks, composites, and nanocomposites. Elsevier Inc., 2019.

Z. Hashin, “Analysis of Properties of Fiber Composites With Anisotropic Constituents.,” J. Appl. Mech. Trans. ASME, vol. 46, no. 3, pp. 543–550, 1979, DOI: 10.1115/1.3424603.

M. Santiam, R. Drainage, and W. Cascades, “The Applicability of Linear Elastic Fracture Mechanics to Compressive Damage of the Carbon Fiber Reinforced Plastic Matrix,” 2019.

J. Njuguna, P. Wambua, and K. Pielichowski, Cellulose Fibers: Bio- and Nano-Polymer Composites. 2011.

B. Admadi H and I. W. Arnata, “Teknologi Polimer,” pp. 1–46, 2015.

K. Deepak, N. S. Reddy, and T. V. S. Naidu, "Thermosetting Polymer and Nano Clay Based Natural Fiber BioComposites," Procedia Mater. Sci., vol. 10, no. Cnt 2014, pp. 626–631, 2015, DOI: 10.1016/j.mspro.2015.06.095.

K. Liu, S. He, Y. Qian, Q. An, A. Stein, and C. W. Macosko, “Nanoparticles in Glass Fiber-Reinforced Polyester Composites: Comparing Toughening Effects of Modified Graphene Oxide and Core-Shell Rubber,” Polym. Compos., vol. 40, no. S2, pp. E1512–E1524, 2019, DOI: 10.1002/pc.25065.




DOI: https://doi.org/10.18196/jmpm.v6i1.14450

Refbacks

  • There are currently no refbacks.


 


Editorial Office :

JMPM (Jurnal Material dan Proses Manufaktur)

Department of Mechanical Engineering, Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.

Jl. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia

Email: jmpm@umy.ac.id

 (62)274-387656     (62)274-387656    0895358065162