Pengaruh Variasi Debit Air Terhadap Unjuk Kerja Termal Tangki Pemanas Air Tenaga Surya yang Berisi Phase-Change Material

Tito Hadji Agung Santosa, Angga Dwi Sentosa, Darmawan Mukhlisin

Abstract


Integrasi air dan phase-change material (PCM) menarik diterapkan pada pemanas air tenaga surya (PATS). Teknik enkapsulasi PCM menggunakan kapsul dapat dilakukan di dalam tangki PATS. Sejauh ini, karakteristik termal di dalam tangki PATS posisi horizontal berisi PCM yang berkaitan dengan variasi debit air belum pernah diungkap. Penelitian ini bertujuan untuk menyelidiki karakteristik termal tangki PATS yang melibatkan PCM dengan variasi debit air.  Eksperimen menggunakan PATS sistem aktif dengan volume tangki 60 liter. Kapsul silinder berjumlah 24 buah diisi paraffin wax dan dimasukkan ke dalam tangki PATS. Termokopel sebanyak 20 buah dipasang di sisi air dan paraffin wax. Proses charging dilakukan selama 160 menit. Variasi debit air yang digunakan adalah 1 lpm, 2 lpm dan 3 lpm. Data temperatur air dan paraffin wax digunakan untuk menganalisis kinerja termal PATS. Hasil karakteristik termal dari tiga eksperimen kemudian dibandingkan. Energi termal akumulatif yang diperoleh untuk debit aliran 1 lpm, 2 lpm dan 3 lpm masing-masing adalah 12,09 MJ, 14,08 MJ dan 16,59 MJ. Penambahan debit aliran air mampu meningkatkan unjuk kerja termal sistem PATS yang melibatkan PCM.

The integration of water and phase-change materials (PCM) is interestingly applied to solar water heaters (SWH). PCM encapsulation technique using capsules can be carried out in an SWH tank. So far, the thermal characteristics in the horizontal position of the SWH tank containing PCM related to variations in water flow have not been revealed. This study investigates the thermal characteristics of SWH tanks involving PCM with variations in water discharge. This experiment uses an active SWH system with a tank volume of 60 liters. The 24 cylindrical capsules were filled with paraffin wax and put into the SWH tank. There were twenty thermocouples installed on the waterside and paraffin wax. The charging process is carried out for 160 minutes. Variations of water discharge used are 1 lpm, 2 lpm, and 3 lpm. Water temperature data and paraffin wax were used to analyze the thermal performance of SWH. The results of the thermal characteristics of the three experiments were then compared. The accumulative thermal energy obtained for flow rates of 1 lpm, 2 lpm, and 3 lpm was 12.09 MJ, 14.08 MJ, and 16.59 MJ, respectively. The addition of the water flow rate can increase the thermal performance of the SWH system involving PCM.


Keywords


Capsule; charging; paraffin wax; phase change material; solar water heater

Full Text:

PDF

References


B. Kalidasan, A. K. Pandey, S. Shahabuddin, M. Samykano, M. Thirugnanasambandam, and R. Saidur, “Phase change materials integrated solar thermal energy systems: Global trends and current practices in experimental approaches,” J. Energy Storage, vol. 27, no. November 2019, p. 101118, 2020, doi: 10.1016/j.est.2019.101118.

A. Sugiyono, I. F. Anindhita, and L. Wahid, Adiarso,“Outlook Energi Indonesia 2019: Dampak Peningkatan Pemanfaatan Energi Baru Terbarukan Terhadap Perekonomian Nasional,” no. December. 2019.

A. Shahsavari and M. Akbari, “Potential of solar energy in developing countries for reducing energy-related emissions,” Renew. Sustain. Energy Rev., vol. 90, no. June 2017, pp. 275–291, 2018, doi: 10.1016/j.rser.2018.03.065.

M. Raisul Islam, K. Sumathy, and S. Ullah Khan, “Solar water heating systems and their market trends,” Renew. Sustain. Energy Rev., vol. 17, pp. 1–25, 2013, doi: 10.1016/j.rser.2012.09.011.

O. Ibrahim, F. Fardoun, R. Younes, and H. Louahlia-Gualous, “Review of water-heating systems: General selection approach based on energy and environmental aspects,” Build. Environ., vol. 72, pp. 259–286, 2014, doi: 10.1016/j.buildenv.2013.09.006.

F. G. Uctug and A. Azapagic, “Life cycle environmental impacts of domestic solar water heaters in Turkey: The effect of different climatic regions,” Sci. Total Environ., vol. 622–623, pp. 1202–1216, 2018, doi: 10.1016/j.scitotenv.2017.12.057.

M. A. Fazilati and A. A. Alemrajabi, “Phase change material for enhancing solar water heater, an experimental approach,” Energy Convers. Manag., vol. 71, pp. 138–145, 2013, doi: 10.1016/j.enconman.2013.03.034.

S. Y. Kee, Y. Munusamy, and K. S. Ong, “Review of solar water heaters incorporating solid-liquid organic phase change materials as thermal storage,” Appl. Therm. Eng., vol. 131, pp. 455–471, 2018, doi: 10.1016/j.applthermaleng.2017.12.032.

C. Cárdenas-Ramírez, F. Jaramillo, and M. Gómez, “Systematic review of encapsulation and shape-stabilization of phase change materials,” J. Energy Storage, vol. 30, no. 52, p. 101495, 2020, doi: 10.1016/j.est.2020.101495.

T. Nomura, M. Tsubota, T. Oya, N. Okinaka, and T. Akiyama, “Heat storage in direct-contact heat exchanger with phase change material,” Appl. Therm. Eng., vol. 50, no. 1, pp. 26–34, 2013, doi: 10.1016/j.applthermaleng.2012.04.062.

S. Bouadila, M. Fteïti, M. M. Oueslati, A. Guizani, and A. Farhat, “Enhancement of latent heat storage in a rectangular cavity: Solar water heater case study,” Energy Convers. Manag., vol. 78, no. December 2018, pp. 904–912, 2014, doi: 10.1016/j.enconman.2013.07.094.

R. Fukahori, T. Nomura, C. Zhu, N. Sheng, N. Okinaka, and T. Akiyama, “Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage,” Appl. Energy, vol. 170, pp. 324–328, 2016, doi: 10.1016/j.apenergy.2016.02.106.

P. B. Salunkhe and P. S. Shembekar, “A review on effect of phase change material encapsulation on the thermal performance of a system,” Renew. Sustain. Energy Rev., vol. 16, no. 8, pp. 5603–5616, 2012, doi: 10.1016/j.rser.2012.05.037.

M. Ibáñez, L. F. Cabeza, C. Solé, J. Roca, and M. Nogués, “Modelization of a water tank including a PCM module,” Appl. Therm. Eng., vol. 26, no. 11–12, pp. 1328–1333, 2006, doi: 10.1016/j.applthermaleng.2005.10.022.

S. A. Vijay Padmaraju, M. Viginesh, and N. Nallusamy, “Comparitive study of sensible and latent heat storage systems integrated with solar water heating unit,” Renew. Energy Power Qual. J., vol. 1, no. 6, pp. 55–60, 2008, doi: 10.24084/repqj06.218.

I. Al-Hinti, A. Al-Ghandoor, A. Maaly, I. Abu Naqeera, Z. Al-Khateeb, and O. Al-Sheikh, “Experimental investigation on the use of water-phase change material storage in conventional solar water heating systems,” Energy Convers. Manag., vol. 51, no. 8, pp. 1735–1740, 2010, doi: 10.1016/j.enconman.2009.08.038.

B. Kanimozhi and B. R. R. Bapu, “Experimental study of thermal energy storage in solar system using PCM,” Adv. Mater. Res., vol. 433–440, pp. 1027–1032, 2012, doi: 10.4028/www.scientific.net/AMR.433-440.1027.

S. A. Khot, “Enhancement of thermal storage system using phase change material,” Energy Procedia, vol. 54, pp. 142–151, 2014, doi: 10.1016/j.egypro.2014.07.257.

H. M. Teamah, M. F. Lightstone, and J. S. Cotton, “Potential of cascaded phase change materials in enhancing the performance of solar domestic hot water systems,” Sol. Energy, vol. 159, no. October 2017, pp. 519–530, 2018, doi: 10.1016/j.solener.2017.11.034.

P. Manoj Kumar and K. Mylsamy, “Experimental investigation of solar water heater integrated with a nanocomposite phase change material: Energetic and exergetic approach,” J. Therm. Anal. Calorim., vol. 136, no. 1, pp. 121–132, 2019, doi: 10.1007/s10973-018-7937-9.

D. Qin, Z. J. Yu, T. Yang, S. Li, and G. Zhang, “Thermal performance evaluation of a new structure hot water tank integrated with phase change materials,” Energy Procedia, vol. 158, pp. 5034–5040, 2019, doi: 10.1016/j.egypro.2019.01.659.

H. Nazir et al., “Recent developments in phase change materials for energy storage applications: A review,” Int. J. Heat Mass Transf., vol. 129, pp. 491–523, 2019, doi: 10.1016/j.ijheatmasstransfer.2018.09.126.

R. CHARGUI and B. TASHTOUSH, “Thermoeconomic Analysis of Solar Water Heaters Integrating Phase Change Material Modules and Mounted in Football Pitches in Tunisia,” J. Energy Storage, vol. 33, no. November 2020, p. 102129, 2021, doi: 10.1016/j.est.2020.102129.

N. Nallusamy, S. Sampath, and R. Velraj, “Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources,” Renew. Energy, vol. 32, no. 7, pp. 1206–1227, 2007, doi: 10.1016/j.renene.2006.04.015.

M. A. Ezan, M. Ozdogan, and A. Erek, “Experimental study on charging and discharging periods of water in a latent heat storage unit,” Int. J. Therm. Sci., vol. 50, no. 11, pp. 2205–2219, 2011, doi: 10.1016/j.ijthermalsci.2011.06.010.




DOI: https://doi.org/10.18196/jmpm.v6i1.14795

Refbacks

  • There are currently no refbacks.


 


Editorial Office :

JMPM (Jurnal Material dan Proses Manufaktur)

Department of Mechanical Engineering, Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.

Jl. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia

Email: jmpm@umy.ac.id

 (62)274-387656     (62)274-387656    0895358065162