Vibration-Based Discriminant Analysis for Pipeline Leaks Detection
Main Article Content
Abstract
Article Details
License
JMPM (Jurnal Material dan Proses Manufaktur) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. You are free to :
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms, which include the following:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
References
Mudiarto, A., Supriyadi, and Sugiyanto. Pemodelan Fisik Untuk Monitoring Kebocoran Pipa Air Dengan Metode Geolistrik. Unnes Physics Journal, 2012; 1.
Rahmat, R.F., I. Satria, B. Siregar, and R. Budiarto. Water Pipeline Monitoring and Leak Detection using Flow Liquid Meter Sensor. IOP Conference Series: Materials Science and Engineering, 2016; 190.
Yazdekhasti, S., K.R. Piratla, S. Atamturktur, and A.A. Khan. Novel vibration-based technique for detecting water pipeline leakage. Structure and Infrastructure Engineering, 2017; 13: 731 - 742.
Marmarokopos, K., D. Doukakis, G.N. Frantziskonis, and M. Avlonitis. Leak Detection in Plastic Water Supply Pipes with a High Signal-to-Noise Ratio Accelerometer. Measurement and Control, 2018; 51: 27 - 37.
Okosun, F., P. Cahill, B. Hazra, and V. Pakrashi. Vibration-based leak detection and monitoring of water pipes using output-only piezoelectric sensors. The European Physical Journal Special Topics, 2019; 228(7): 1659-1675.
Yazdekhasti, S., K. Piratla, S. Atamturktur, and A. Khan. Experimental evaluation of a vibration-based leak detection technique for water pipelines. Structure and Infrastructure Engineering, 2017; 14: 1-10.
Sharma, P. and M. Kaur. Classification in Pattern Recognition: A Review. International Journal of Research in Computer Science and Software Engineering, 2013; 3(4): 298-306.
Tharwat, A. Linear vs. quadratic discriminant analysis classifier: a tutorial. Int. J. Appl. Pattern Recognit., 2016; 3: 145-180.
Jakovljevic, B.B., Z. Kanovic, and Z.D. Jeličić. Induction motor broken bar detection using vibration signal analysis, principal component analysis and linear discriminant analysis. 2012 IEEE International Conference on Control Applications, 2012: 1686-1690.
Fernandez-Temprano, M., P.E. Gardel-Sotomayor, O. Duque-Perez, and D. Morinigo-Sotelo. Broken bar condition monitoring of an induction motor under different supplies using a linear discriminant analysis. in 2013 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED). 2013.
Haddad, R.Z. and E.G. Strangas. On the Accuracy of Fault Detection and Separation in Permanent Magnet Synchronous Machines Using MCSA/MVSA and LDA. IEEE Transactions on Energy Conversion, 2016; 31: 924-934.
Saputra, P.P.S., F.D. Murdianto, R. Firmansyah, and K. Widarsono. Combination Of Quadratic Discriminant Analysis And Daubechis Wavelet For Classification Level Of Misalignment On Induction Motor. 2019 International Symposium on Electronics and Smart Devices (ISESD), 2019: 1-5.
Tsitsifli, S., V. Kanakoudis, and I. Bakouros. Pipe reliability assessment using discriminant analysis and classification: a case study from Mexico. in Protection and Restoration of the Environment VIII. 2006. Chania, Crete, Greece
Chi, Z., Y. Li, W. Wang, C. Xu, and R. Yuan. Detection of water pipeline leakage based on random forest. Journal of Physics: Conference Series, 2021; 1978(1): 012044.