Composite Manufacturing of Recycled Polypropylene Fiber-Reinforced Epoxy Made of Medical Mask Waste

Febrianti Nurul Hidayah, Muhammad Ricky Alendra, Dina Aulia Fuad

Abstract


Dengan maraknya penggunaan masker sekali pakai, maka limbah dari masker tersebut menjadi polemik di tengah masyarakat karena masker terbuat dari bahan yang sama dengan plastik yang tidak mudah terdegradasi. Oleh karenanya, perlu pengolahan limbah tersebut untuk menjadi produk baru salah satunya menjadi komposit. Penelitian ini bertujuan untuk menghasilkan komposit dari resin epoksi dan lapisan tengah masker medis untuk mengetahui bagaimana pengaruh penambahan fraksi volume bagian  lapisan tengah masker medis terhadap kekuatan tarik dan mengetahui sifat, struktur, dan karakteristik pada komposit lapisan tengah masker medis. Karena komposit merupakan gabungan dua bahan atau lebih yang disusun untuk meningkatkan sifat mekanik bahan agar lebih unggul dan memiliki sifat yang tidak sama dengan sifat bahan aslinya. Pemanfaatan material komposit pada saat ini semakin berkembang, seiring berjalan dengan meningkatnya penggunaan bahan yang lebih unggul tersebut yang semakin meluas mulai dari yang sederhana seperti alat-alat rumah tangga sampai dalam bidang industri otomotif. Pengolahan masker medis terutama lapisan tengah masker medis pada penelitian ini berupa lembaran polipropilen yang telah disterilisasi dan dipotong-potong dicampur dengan resin epoksi sebagai fasa pengikat dengan perbandingan fraksi volume 1:3 pada sampel 1, 1:1 pada sampel 2 dan sedangkan sampel 3 adalah 3:1. Kemudian pengujian dilakukan secara fisik dan mekanik, yaitu pengamatan morfologi menggunakan Scanning Electron Microscope (SEM) serta uji kekuatan tarik. Berdasarkan hasil uji tarik bisa diamati rata-rata tegangan maksimum setiap volume serat polipropilen pada 25% sebesar 1,73 MPa, 50% sebesar 2,58 MPa serta 75% sebesar 19,64 MPa. Hasil tersebut dapat disimpulkan bahwa semakin besar persentase volume serat polipropilen yang berasal dari  masker  maka akan semakin besar pula nilai tegangan maksimum yang diperoleh.

 

With the widespread use of disposable masks, the waste from these masks has become a polemic in the community because masks are made of the same material as plastic, which is not degradable. Therefore, it is necessary to process the waste to create new products. One of them is a composite. This study aims to produce a composite of epoxy resin and the middle layer of a medical mask to determine the effect of adding the volume fraction of the middle layer of a medical mask to the tensile strength and to determine the properties, structure, and characteristics of the composite middle layer of a medical mask. Because the composite is a combination of two or more materials that are arranged to improve the mechanical properties of the material, it is superior and has properties that are not the same as the properties of the original material. The use of composite materials is currently increasing, as is the use of these superior materials, which are becoming more widespread in applications ranging from simple household appliances to the automotive industry. Processing of medical masks, especially the middle layer of medical masks, was studied in the form of polypropylene sheets that had been sterilized and cut into pieces mixed with epoxy resin as the binding phase with a volume fraction ratio of 1:3 in sample 1, a ratio of 1:1 in sample 2, and a 3:1 ratio in sample 3. Then the tests were carried out physically and mechanically, namely morphological observations using a scanning electron microscope (SEM) and tensile strength tests. Based on the results of the tensile test, it can be observed that the average maximum stress for each volume of polypropylene fiber is 1.73 MPa at 25%, 2.58 MPa at 50%, and 19.64 MPa at 75%. These results indicate that the greater the volume percentage of polypropylene fiber originating from the mask, the greater the maximum stress value obtained.


Keywords


medical mask; composite; volume fraction; stress; polypropylene

Full Text:

PDF

References


N. Vidakis et al., “Sustainable additive manufacturing: Mechanical response of polyethylene terephthalate glycol over multiple recycling processes,” Materials (Basel)., vol. 14, no. 5, pp. 1–16, 2021, doi: 10.3390/ma14051162.

D. S. Achilias, C. Roupakias, P. Megalokonomos, A. A. Lappas, and V. Antonakou, “Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP),” J. Hazard. Mater., vol. 149, no. 3, pp. 536–542, 2007, doi: 10.1016/j.jhazmat.2007.06.076.

C. Aumnate, N. Rudolph, and M. Sarmadi, “Recycling of polypropylene/polyethylene blends: Effect of chain structure on the crystallization behaviors,” Polymers (Basel)., vol. 11, no. 9, 2019, doi: 10.3390/polym11091456.

Á. A. Matias et al., “Use of recycled polypropylene/poly(ethylene terephthalate) blends to manufacture water pipes: An industrial scale study,” Waste Manag., vol. 101, pp. 250–258, Jan. 2020, doi: 10.1016/j.wasman.2019.10.001.

S. Saikrishnan, D. Jubinville, C. Tzoganakis, and T. H. Mekonnen, “Thermo-mechanical degradation of polypropylene (PP) and low-density polyethylene (LDPE) blends exposed to simulated recycling,” Polym. Degrad. Stab., vol. 182, p. 109390, 2020, doi: 10.1016/j.polymdegradstab.2020.109390.

J. E. Galve et al., “Dimensional stability and process capability of an industrial component injected with recycled polypropylene,” Polymers (Basel)., vol. 11, no. 6, 2019, doi: 10.3390/polym11061063.

Y. Zhu, C. Liang, Y. Bo, and S. Xu, “Compatibilization of polypropylene/recycled polyethylene terephthalate blends with maleic anhydride grafted polypropylene in the presence of diallyl phthalate,” J. Polym. Res., vol. 22, no. 3, 2015, doi: 10.1007/s10965-014-0591-4.

Y. X. Pang, D. M. Jia, H. J. Hu, D. J. Hourston, and M. Song, “Effects of a compatibilizing agent on the morphology, interface and mechanical behaviour of polypropylene/poly(ethylene terephthalate) blends,” Polymer (Guildf)., vol. 41, no. 1, pp. 357–365, 2000, doi: 10.1016/S0032-3861(99)00123-8.

R. C. L. Dutra, B. G. Soares, E. A. Campos, and J. L. G. Silva, “Hybrid composites based on polypropylene and carbon fiber and epoxy matrix,” Polymer (Guildf)., vol. 41, no. 10, pp. 3841–3849, 2000.

T. N. Prabhu, Y. J. Hemalatha, V. Harish, K. Prashantha, and P. Iyengar, “Thermal degradation of epoxy resin reinforced with polypropylene fibers,” J. Appl. Polym. Sci., vol. 104, no. 1, pp. 500–503, 2007.

M. Sogancioglu, E. Yel, and G. Ahmetli, “Behaviour of waste polypropylene pyrolysis char-based epoxy composite materials,” Environ. Sci. Pollut. Res., vol. 27, no. 4, pp. 3871–3884, 2020.

H. M. Chethanbabu and M. Ramachandra, “Evaluation of mechanical properties of polypropylene fibre reinforced epoxy composite filled with silicon carbide particulates,” Mater. Today Proc., vol. 46, pp. 4400–4406, 2021.

R. A. Rebia, A. S. Budiman, F. N. Hidayah, D. W. Septyani, and S. A. Isla, “Preparasi dan Karakteristik Lembaran Plastik Limbah Masker Berdasarkan Variasi Lapisan Luar, Tengah, dan Dalam,” J. Serambi Eng., vol. 7, no. 4, 2022.

A. S. Budiman, R. A. Rebia, F. N. Hidayah, D. W. Septyani, and S. A. Isla, “Analisis Mekanik Lembaran Plastik Hasil Pengolahan Limbah Masker Medis Tiga Lapis Dengan Variasi Berat,” CENDEKIA EKSAKTA, vol. 7, no. 2, 2022.

R. I. Fajri, T. Tarkono, and S. Sugiyanto, “Studi sifat mekanik komposit serat Sansevieria cylindrica dengan variasi fraksi volume bermatrik polyester.” Lampung University, 2013.

A. Lakshmikanthan, S. B. Udayagiri, P. G. Koppad, M. Gupta, K. Munishamaiah, and S. Bontha, “The effect of heat treatment on the mechanical and tribological properties of dual size SiC reinforced A357 matrix composites,” J. Mater. Res. Technol., vol. 9, no. 3, pp. 6434–6452, 2020.

B. Bagheri, M. Abbasi, A. Abdollahzadeh, and S. E. Mirsalehi, “Effect of second-phase particle size and presence of vibration on AZ91/SiC surface composite layer produced by FSP,” Trans. Nonferrous Met. Soc. China, vol. 30, no. 4, pp. 905–916, 2020.

American Society for Testing and Material (ASTM), “Standard Test Method for Tensile Properties of Plastics (D638-14),” in Annu. Book ASTM Stand, 2009, pp. 1–17.

S. Sujita, “Pengaruh Penambahan Limbah Plastik Bekas Terhadap Karakteristik Kekuatan Tarik Dan Kekuatan Bending Material Polimer Komersil,” Din. Tek. Mesin J. Keilmuan dan Terap. Tek. Mesin, vol. 5, no. 1, pp. 25–31, 2015.

N. Sasria, “Composite Manufacturing of Coir Fiber-Reinforced Polyester as a Motorcycle Helmet Material,” JMPM (Jurnal Mater. dan Proses Manufaktur), vol. 6, no. 1, 2022.

M. A. Yuniarti, “Pengaruh Perlakuan Alkali, Fraksi Volume Serat, Dan Panjang Serat Terhadap Kekuatan Tarik Skin Komposit Sandwich Berbahan Dasar Serat Tebu.,” 2011.




DOI: https://doi.org/10.18196/jmpm.v6i2.16705

Refbacks

  • There are currently no refbacks.


 


Editorial Office :

JMPM (Jurnal Material dan Proses Manufaktur)

Department of Mechanical Engineering, Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.

Jl. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia

Email: jmpm@umy.ac.id

 (62)274-387656     (62)274-387656