Semiconductor Based on Oil Palm Empty Fruit Bunch Alkali Cellulose

Rima Fitria Adiati, Siti Nikmatin, - Irmansyah

Abstract


Oil palm empty fruit bunch (OPEFB) is a readily available biomass resource in Indonesia. Its processing into alpha-cellulose and alkaline cellulose offers promising economic opportunities and sustainable sensor development. This study focuses on extracting alpha-cellulose from OPEFB using kraft hydrolysis method and converting it into alkaline cellulose using NaOH solution. The 15, 20, and 25% variation of NaOH percentage during pulping resulting in different pulp quality indicated by alpha-cellulose content. The resulting alkali cellulose exhibits semiconductor properties with an energy gap of 3.6 eV, demonstrating its potential for light sensor or photodiode applications. Additionally, the optical energy gap of alkali cellulose-polyvinyl alcohol composites is investigated.

References


BPDPKS, “Laporan Tahunan 2020,” 2020. Accessed: Feb. 19, 2023. [Online]. Available: https://www.bpdp.or.id/annual-report-bpdpks-tahun-2020

N. Hidayah and I. U. Wusko, “Characterization and Analysis of Oil Palm Empty Fruit Bunch (OPEFB) Waste of PT Kharisma Alam Persada South Borneo,” Majalah Obat Tradisional, vol. 25, no. 3, Dec. 2020, doi: 10.22146/mot.52715.

H. Ma, Z. Cheng, X. Li, B. Li, Y. Fu, and J. Jiang, “Advances and challenges of cellulose functional materials in sensors,” Journal of Bioresources and Bioproducts, vol. 8, no. 1. KeAi Communications Co., pp. 15–32, Feb. 01, 2023. doi: 10.1016/j.jobab.2022.11.001.

C. Annandarajah, A. Langhorst, A. Kiziltas, D. Grewell, D. Mielewski, and R. Montazami, “Hybrid cellulose-glass fiber composites for automotive applications,” Materials, vol. 12, no. 19, Oct. 2019, doi: 10.3390/ma12193189.

H. Koga et al., “Nanocellulose Paper Semiconductor with a 3D Network Structure and Its Nano-Micro-Macro Trans-Scale Design,” ACS Nano, vol. 16, no. 6, pp. 8630–8640, Jun. 2022, doi: 10.1021/acsnano.1c10728.

H. Golmohammadi, E. Morales-Narváez, T. Naghdi, and A. Merkoçi, “Nanocellulose in Sensing and Biosensing,” Chemistry of Materials, vol. 29, no. 13. American Chemical Society, pp. 5426–5446, Jul. 11, 2017. doi: 10.1021/acs.chemmater.7b01170.

J. Ma et al., “Robust cellulose-carbon nanotube conductive fibers for electrical heating and humidity sensing,” Cellulose, vol. 28, no. 12, pp. 7877–7891, Aug. 2021, doi: 10.1007/s10570-021-04026-y.

C. Wang et al., “Continuous Meter-Scale Wet-Spinning of Cornlike Composite Fibers for Eco-Friendly Multifunctional Electronics,” ACS Appl Mater Interfaces, vol. 13, no. 34, pp. 40953–40963, Sep. 2021, doi: 10.1021/acsami.1c12012.

Z. Chen, T. Yan, and Z. Pan, “Review of flexible strain sensors based on cellulose composites for multi-faceted applications,” Cellulose, vol. 28, no. 2. Springer Science and Business Media B.V., pp. 615–645, Jan. 01, 2021. doi: 10.1007/s10570-020-03543-6.

E. Bencurova et al., “Nanocellulose Composites as Smart Devices With Chassis, Light-Directed DNA Storage, Engineered Electronic Properties, and Chip Integration,” Front Bioeng Biotechnol, vol. 10, Aug. 2022, doi: 10.3389/fbioe.2022.869111.

G. Barandun et al., “Cellulose Fibers Enable Near-Zero-Cost Electrical Sensing of Water-Soluble Gases,” ACS Sens, vol. 4, no. 6, pp. 1662–1669, Jun. 2019, doi: 10.1021/acssensors.9b00555.

T. Siripongpreda, N. Rodthongkum, and S. Ummartyotin, “A critical review on cellulose wastes as the novel substrates for colorimetric and electrochemical sensors,” Current Research in Green and Sustainable Chemistry, vol. 4. Elsevier B.V., Jan. 01, 2021. doi: 10.1016/j.crgsc.2021.100190.

N. Villarino, F. Pena-Pereira, I. Lavilla, and C. Bendicho, “Waterproof Cellulose-Based Substrates for In-Drop Plasmonic Colorimetric Sensing of Volatiles: Application to Acid-Labile Sulfide Determination in Waters,” ACS Sens, vol. 7, no. 3, pp. 839–848, Mar. 2022, doi: 10.1021/acssensors.1c02585.

S. Kamel and T. A. Khattab, “Recent advances in cellulose-based biosensors for medical diagnosis,” Biosensors, vol. 10, no. 6. MDPI, Jun. 17, 2020. doi: 10.3390/BIOS10060067.

F. Basarir, J. J. Kaschuk, and J. Vapaavuori, “Perspective about Cellulose-Based Pressure and Strain Sensors for Human Motion Detection,” Biosensors, vol. 12, no. 4. MDPI, Apr. 01, 2022. doi: 10.3390/bios12040187.

G. Dandegaonkar, A. Ahmed, L. Sun, B. Adak, and S. Mukhopadhyay, “Cellulose based flexible and wearable sensors for health monitoring,” Materials Advances. Royal Society of Chemistry, 2022. doi: 10.1039/d1ma01210j.

H. Tu, X. Li, Y. Liu, L. Luo, B. Duan, and R. Zhang, “Recent progress in regenerated cellulose-based fibers from alkali/urea system via spinning process,” Carbohydrate Polymers, vol. 296. Elsevier Ltd, Nov. 15, 2022. doi: 10.1016/j.carbpol.2022.119942.

Y. Jiao et al., “Highly stretchable and self-healing cellulose nanofiber-mediated conductive hydrogel towards strain sensing application,” J Colloid Interface Sci, vol. 597, pp. 171–181, Sep. 2021, doi: 10.1016/j.jcis.2021.04.001.

N. K. Nguyen et al., “Wide-Band-Gap Semiconductors for Biointegrated Electronics: Recent Advances and Future Directions,” ACS Applied Electronic Materials, vol. 3, no. 5. American Chemical Society, pp. 1959–1981, May 25, 2021. doi: 10.1021/acsaelm.0c01122.

W. Farhat et al., “Hemicellulose extraction and characterization for applications in paper coatings and adhesives,” Ind Crops Prod, vol. 107, pp. 370–377, Nov. 2017, doi: 10.1016/j.indcrop.2017.05.055.

C. Fechter, S. Fischer, F. Reimann, H. Brelid, and T. Heinze, “Influence of pulp characteristics on the properties of alkali cellulose,” Cellulose, vol. 27, no. 12, pp. 7227–7241, Aug. 2020, doi: 10.1007/s10570-020-03151-4.

S. Yokota, A. Nishimoto, and T. Kondo, “Alkali-activation of cellulose nanofibrils to facilitate surface chemical modification under aqueous conditions,” Journal of Wood Science, vol. 68, no. 1, Dec. 2022, doi: 10.1186/s10086-022-02022-9.

C. A. Purwita, S. Sugesty, H. R. Balai, B. Pulp, D. Kertas, and J. Raya, “Characteristics of Commercial Acid Sulfite and Prehydrolysis Kraft Rayon Pulp Based on SNI 938:2017,” Jurnal Standardisasi, vol. 22, no. 1, 2020.

W. Wei et al., “Severity factor & dissolving pulp,” 2020.

S. Susi, M. Ainuri, W. Wagiman, and M. A. F. Falah, “High-Yield Alpha-Cellulose from Oil Palm Empty Fruit Bunches by Optimizing Thermochemical Delignification Processes for Use as Microcrystalline Cellulose,” Int J Biomater, 2023, doi: 10.1155/2023/9169431.

W. Fatriasari, N. Masruchin, and E. Hermiati, Selulosa: Karakteristik dan Pemanfaatannya. LIPI Press, 2019.

L. Chopra and Manikanika, “Extraction of cellulosic fibers from the natural resources: A short review,” Mater Today Proc, vol. 48, pp. 1265–1270, 2022, doi: 10.1016/j.matpr.2021.08.267.

P. Makuła, M. Pacia, and W. Macyk, “How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra,” Journal of Physical Chemistry Letters, vol. 9, no. 23. American Chemical Society, pp. 6814–6817, Dec. 06, 2018. doi: 10.1021/acs.jpclett.8b02892.

R. Marzouki et al., “Mercerization effect on structure and electrical properties of cellulose: Development of a novel fast Na-ionic conductor,” Carbohydr Polym, vol. 221, pp. 29–36, Oct. 2019, doi: 10.1016/j.carbpol.2019.05.083.

D. Srivastava, M. S. Kuklin, J. Ahopelto, and A. J. Karttunen, “Electronic band structures of pristine and chemically modified cellulose allomorphs,” Carbohydr Polym, vol. 243, Sep. 2020, doi: 10.1016/j.carbpol.2020.116440.




DOI: https://doi.org/10.18196/jmpm.v8i1.20521

Refbacks

  • There are currently no refbacks.


 


Editorial Office :

JMPM (Jurnal Material dan Proses Manufaktur)

Department of Mechanical Engineering, Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.

Jl. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia

Email: jmpm@umy.ac.id

 (62)274-387656     (62)274-387656    0895358065162