Impact of Mass Flow Rate on Thermal Behavior of PCM-Based SWH during Charging Operations
Abstract
Using phase change materials in solar water heaters presents an intriguing prospect due to their notable energy density and potential for substantial thermal energy storage capacity. In the context of active-type solar water heaters, careful consideration must be given to the water flow rate as a crucial parameter. This paper investigates the thermal dynamics of active-type solar water heaters equipped with phase change materials, examining variations in mass flow rate during the charging process. Indoor experiments utilized horizontal tanks, flat plate collectors, pumps, and solar simulators. Cylindrical capsules filled with paraffin wax were employed and arranged horizontally within the tank, while K-type thermocouples were utilized to monitor water and paraffin wax temperatures. Charging procedures were executed over 160 minutes with mass flow rate adjustments. Data analysis was performed to evaluate the system's thermal performance during charging. Results indicate higher mass flow rates correspond to increased instantaneous, cumulative heat storage, and charging efficiency. The mass flow rate notably affects the thermal efficiency of solar water heater systems incorporating phase change materials.
Full Text:
PDFReferences
A. Raihan, “An overview of the energy segment of Indonesia: present situation, prospects, and forthcoming advancements in renewable energy technology,” J. Technol. Innov. Energy, vol. 2, no. 3, pp. 37–63, 2023, doi: 10.56556/jtie.v2i3.599.
B. P. Resosudarmo, J. F. Rezki, and Y. Effendi, “Prospects of Energy Transition in Indonesia,” Bull. Indones. Econ. Stud., vol. 59, no. 2, pp. 149–177, 2023, doi: 10.1080/00074918.2023.2238336.
E. Erdiwansyah et al., “Investigation of availability, demand, targets, and development of renewable energy in 2017–2050: a case study in Indonesia,” Int. J. Coal Sci. Technol., vol. 8, no. 4, pp. 483–499, 2021, doi: 10.1007/s40789-020-00391-4.
A. Jamar, Z. A. A. Majid, W. H. Azmi, M. Norhafana, and A. A. Razak, “A review of water heating system for solar energy applications,” Int. Commun. Heat Mass Transf., vol. 76, pp. 178–187, 2016, doi: 10.1016/j.icheatmasstransfer.2016.05.028.
M. Shirinbakhsh, N. Mirkhani, and B. Sajadi, “Optimization of the PCM-integrated solar domestic hot water system under different thermal stratification conditions,” Energy Equip. Syst., vol. 4, no. 2, pp. 271–279, 2016.
S. ed D. Fertahi, A. Jamil, and A. Benbassou, “Review on Solar Thermal Stratified Storage Tanks (STSST): Insight on stratification studies and efficiency indicators,” Sol. Energy, vol. 176, pp. 126–145, 2018, doi: 10.1016/j.solener.2018.10.028.
F. G. Uctug and A. Azapagic, “Life cycle environmental impacts of domestic solar water heaters in Turkey: The effect of different climatic regions,” Sci. Total Environ., vol. 622–623, pp. 1202–1216, 2018, doi: 10.1016/j.scitotenv.2017.12.057.
G. Murali, K. Mayilsamy, and T. V. Arjunan, “An experimental study of PCM-incorporated thermosyphon solar water heating system,” Int. J. Green Energy, vol. 12, no. 9, pp. 978–986, 2015, doi: 10.1080/15435075.2014.888663.
S. Bouadila, M. Fteïti, M. M. Oueslati, A. Guizani, and A. Farhat, “Enhancement of latent heat storage in a rectangular cavity: Solar water heater case study,” Energy Convers. Manag., vol. 78, pp. 904–912, 2014, doi: 10.1016/j.enconman.2013.07.094.
M. H. Abokersh, M. Osman, O. El-Baz, M. El-Morsi, and O. Sharaf, “Review of the phase change material (PCM) usage for solar domestic water heating systems (SDWHS),” Int. J. Energy Res., vol. 42, no. 2, pp. 329–357, 2018, doi: 10.1002/er.3765.
R. Gulfam, P. Zhang, and Z. Meng, “Advanced thermal systems driven by paraffin-based phase change materials – A review,” Appl. Energy, vol. 238, pp. 582–611, 2019, doi: 10.1016/j.apenergy.2019.01.114.
I. Al-Hinti, A. Al-Ghandoor, A. Maaly, I. Abu Naqeera, Z. Al-Khateeb, and O. Al-Sheikh, “Experimental investigation on the use of water-phase change material storage in conventional solar water heating systems,” Energy Convers. Manag., vol. 51, no. 8, pp. 1735–1740, 2010, doi: 10.1016/j.enconman.2009.08.038.
O. Ibrahim, F. Fardoun, R. Younes, and H. Louahlia-Gualous, “Review of water-heating systems: General selection approach based on energy and environmental aspects,” Build. Environ., vol. 72, pp. 259–286, 2014, doi: 10.1016/j.buildenv.2013.09.006.
Z. Wang, F. Qiu, W. Yang, and X. Zhao, “Applications of solar water heating system with phase change material,” Renew. Sustain. Energy Rev., vol. 52, pp. 645–652, 2015, doi: 10.1016/j.rser.2015.07.184.
P. Feliński and R. Sekret, “Experimental study of evacuated tube collector/storage system containing paraffin as a PCM,” Energy, vol. 114, pp. 1063–1072, 2016, doi: 10.1016/j.energy.2016.08.057.
M. Y. Abdelsalam, P. Sarafraz, J. S. Cotton, and M. F. Lightstone, “Heat transfer characteristics of a hybrid thermal energy storage tank with Phase Change Materials (PCMs) during indirect charging using isothermal coil heat exchanger,” Sol. Energy, vol. 157, pp. 462–476, 2017, doi: 10.1016/j.solener.2017.08.043.
W. Wu et al., “Experimental study on the performance of a novel solar water heating system with and without PCM,” Sol. Energy, vol. 171, pp. 604–612, 2018, doi: 10.1016/j.solener.2018.07.005.
S. Lu, T. Zhang, and Y. Chen, “Study on the performance of heat storage and heat release of water storage tank with PCMs,” Energy Build., vol. 158, pp. 1770–1780, 2018, doi: 10.1016/j.enbuild.2017.10.059.
H. Huang et al., “An experimental investigation on thermal stratification characteristics with PCMs in solar water tank,” Sol. Energy, vol. 177, pp. 8–21, 2019, doi: 10.1016/j.solener.2018.11.004.
M. Nadjib, N. Caroko, T. Thoharudin, and I. Pranoto, “Application of Phase-Change Material in an Active-Type Solar Water Heater: Effect of Void Fraction,” in AIP Conference Proceedings, AIP Publishing, 2023. doi: 10.1063/5.0181908.
N. Nallusamy, S. Sampath, and R. Velraj, “Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources,” Renew. Energy, vol. 32, no. 7, pp. 1206–1227, 2007, doi: 10.1016/j.renene.2006.04.015.
A. Agarwal and R. M. Sarviya, “An experimental investigation of shell and tube latent heat storage for solar dryer using paraffin wax as heat storage material,” Eng. Sci. Technol. an Int. J., vol. 19, no. 1, pp. 619–631, 2016, doi: 10.1016/j.jestch.2015.09.014.
R. Majumdar and S. K. Saha, “Effect of varying extent of PCM capsule filling on thermal stratification performance of a storage tank,” Energy, vol. 178, pp. 1–20, 2019, doi: 10.1016/j.energy.2019.04.101.
M. Nadjib, T. H. A. Santosa, A. D. Sentosa, and D. Mukhlisin, “Pengaruh Variasi Debit Air Terhadap Unjuk Kerja Termal Tangki Pemanas Air Tenaga Surya yang Berisi Phase-Change Material,” JMPM (Jurnal Mater. dan Proses Manufaktur), vol. 6, no. 1, pp. 1–10, 2022, doi: 10.18196/jmpm.v6i1.14795.
Rubitherm Technologies GmbH, “Technisches Datenblatt RT55,” Berlin, 2020. [Online]. Available: www.rubitherm.com
A. Sarı and K. Kaygusuz, “Thermal and heat transfer characteristics in a latent heat storage system using lauric acid,” Energy Convers. Manag., vol. 43, no. 18, pp. 2493–2507, 2002, doi: 10.1016/S0196-8904(01)00187-X.
A. Trp, “An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit,” Sol. Energy, vol. 79, no. 6, pp. 648–660, 2005, doi: 10.1016/j.solener.2005.03.006.
G. Li, “Energy and exergy performance assessments for latent heat thermal energy storage systems,” Renew. Sustain. Energy Rev., vol. 51, pp. 926–954, 2015, doi: 10.1016/j.rser.2015.06.052.
W. Lin, Z. Ling, X. Fang, and Z. Zhang, “Experimental and numerical research on thermal performance of a novel thermal energy storage unit with phase change material,” Appl. Therm. Eng., vol. 186, no. December 2020, p. 116493, 2021, doi: 10.1016/j.applthermaleng.2020.116493.
A. S. Ramana, R. Venkatesh, V. Antony Aroul Raj, and R. Velraj, “Experimental investigation of the LHS system and comparison of the stratification performance with the SHS system using CFD simulation,” Sol. Energy, vol. 103, pp. 378–389, 2014, doi: 10.1016/j.solener.2014.02.009.
DOI: https://doi.org/10.18196/jmpm.v8i1.21848
Refbacks
- There are currently no refbacks.
Editorial Office :
JMPM (Jurnal Material dan Proses Manufaktur)
Department of Mechanical Engineering, Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.
Jl. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia
Email: jmpm@umy.ac.id
(62)274-387656 (62)274-387656