Analisa Struktur Morfologi Pellet Semikonduktor ZnO terhadap Variasi Beban Kompaksi

Yudit Cahyantoro NS, Agus Kurniawan, Bayu Prabandono

Abstract


Abstrak

Salah satu proses yang penting dalam pembuatan bahan berbentuk pellet adalah proses kompaksi. Penelitian ini mempelajari struktur morfologi bahan semikonduktor ZnO yang dikompaksi dengan tekanan berbeda. Bahan awal adalah ZnO murni yang digiling dengan agate mortar, disaring dan dipadatkan dengan tekanan 10 bar, 20 bar dan 30 bar sehingga berbentuk pelet. Ukuran pelet adalah Ø 13 x 2 mm. Selanjutnya, pelet ini disinter pada temperatur 1300oC dan kemudian diuji dengan menggunakan scanning microscope electron (SEM). Hasil pengujian menunjukkan bahwa struktur morfologi partikel material semikonduktor ZnO yang dikompaksi dengan tekanan 30 bar memiliki struktur morfologi yang tidak beraturan dan tidak terlihat batas butirnya. Ketika material tersebut dikompaksi,  ruang antar butir menjadi sangat kecil dan tidak mampu menampung pembesaran partikel akibat proses sintering sehingga kelihatan menyatu dan menjadi keras. Oleh karena itu, semakin besar tekanan kompaksi maka struktur morfologi dari suatu partikel menjadi lebih padat dan menyatu. Namun demikian, besarnya tekanan kompaksi harus diperhatikan dengan mempertimbangkan kemampuan gaya tekan dari cetakan yang digunakan.

 

Abstract

One important process in manufacturing pellet material is a compaction. This research will study the morphological structure of ZnO semiconductor material that is compacted with different pressure. The first material is pure ZnO which was rinded with agate mortar, filtered and compacted with pressure of 10 bar, 20 bar and 30 bar so the pellet form were shaped. The size of pellet was Ø 13 x 2 mm. Furthermore these pellet was sintered at temperature 1300oC and than tested by scanning electron microscope testing (SEM testing). The test results show that the morphological structure of a particle ZnO semiconductor material which was compacted at a pressure of 30 bar had an irregular morphological structure and no visible grain boundaries. When material was compacted, the space between the grains becomes very small and was unable to accommodate the enlargement of particles due to the sintering process so that it appears to fuse and become hard. Therefore, the greater the compacting pressure, the morphological structure of a particle becomes more dense and fuse. However, the magnitude of compacting pressure must be considered by considering the ability of the compressive force of the mold used.

 


Keywords


semikonduktor ZnO, pellet, Kompaksi, SEM

Full Text:

PDF

References


A. Janotti, "Fundamental of Zinc Oxide as A Semiconductor," Rep. Prog. Phys., vol. 126501, p. 29, 2009.

L. Zhang, Z. Ye, J. Huang, B. Lu, H. He, J. Lu, et al., "Fabrication and Propeties of p-type K Doped Zn1-xMgxO Thin Film," Journal of Alloys and Compounds, vol. 509, pp. 7405-7409, 2011.

J. W. Fergus, "Oxide materials for high temperature thermoelectric energy conversion," Journal of the European Ceramic Society, vol. 32, pp. 525–540, 2012.

I. S. Kim, E.-K. Jeong, D. Y. Kim, M. Kumar, and S.-Y. Choi, "Investigation of p-type behavior in Ag-doped ZnO thin films by E-beam evaporation," Applied Surface Science, vol. 255, pp. 4011–4014, 2009.

K. Cheng, Q. Li, J. Meng, X. Han, Y. Wu, S. Wang, et al., "Interface engineering for efficient charge collection in Cu O/ZnO heterojunction solar cells with ordered ZnO cavity-like nanopatterns," Solar Energy Materials & Solar Cells, vol. 116, pp. 120-125, 2013.

E. Hosono, S. Fujihara, I. Honma, and H. Zhou, "The Fabrication of an Upright-Standing Zinc Oxide Nanosheet for Use in Dye-Sensitized Solar Cells," Advances Materials, vol. 17, pp. 2091-2094, 2005.

K. E. Kim, S.-R. Jang, J. Park, R. Vittal, and K.-J. Kim, "Enhancement in the performance of dye-sensitized solar cells containing ZnO-covered TiO2 electrodes prepared by thermal chemical vapor deposition," Solar Energy Materials & Solar Cells, vol. 91, pp. 366-370, 2007.

S. Dai, M. L. Dunn, and H. S. Park, "Piezoelectric constants for ZnO calculated using classical polarizable core–shell potentials," Nanotechnology, vol. 21, pp. 1-8, 2010.

S.-M. Choi, K.-H. Lee, C.-H. Lim, and W.-S. Seo, "Oxide-based thermoelectric power generation module using p-type Ca3Co4O9and n-type (ZnO)7In2O3 legs," Energy Conversion and Management, vol. 52, pp. 335-339, 2010.

K. Kobayashi, T. Koyama, X. Zhang, Y. Kohono, Y. Tomita, Y. Maeda, et al., "Preparation of p-type ZnO Films by Alternate Deposition of ZnO and Mg3N2 Films," Procedia Engineering, vol. 36, pp. 427-433, 2012.

L. Han, Y. Jiang, S. Li, H. Su, X. Lan, K. Qin, et al., "High temperature thermoelectric properties and energy transfer devices of Ca3Co4−xAgxO9 and Ca1−ySmyMnO3," Journal of Alloys and Compounds, vol. 509, pp. 8970-8977, 2011.

C. Li, J. Lv, and Z. Liang, "Effects of Al doping on the optical and electrical properties of pre-synthesized ZnO powders by solid state method," Journal Material Science, vol. 23, pp. 1673-1677, 2012.

X. Qu, W. Wang, S. Lv, and D. Jia, "Thermoelectric properties and electronic structure of Al-doped ZnO," Solid State Communications, vol. 151, pp. 332-336, 2011.

J. Chen, H. Wang, and Y. Yao, "Experimental Study of Nonlinear Ultrasonic Behavior of Soil Materials During the Compaction " Ultrasonics, vol. 5229, pp. 1-6, 2016.

E. Yaghoubi, M. M. Disfani, A. Arulrajah, and J. Kodikara, "Impact of Compaction Methods on Resilient Response of Unsaturated Granular Pavement Material," Procedia Engineering, vol. 143, pp. 323-330, 2016.

L. Goncalves, J. G. Rocha, C. Couto, P. Alpuim, GaoMin, D. M. Rowe, et al., "Fabrication of flexible thermoelectric microcoolers using planar thin-film technologies," Journal Of Micromechanics And Microengineering, vol. 17, pp. 168-173, 2007.

M. Xu, P. W. S. Heng, and C. V. Liew, "Formulation and Process Strategies to Minimize Coat Damage for Compaction of Coated Pellets in a Rotary Tablet Press: A Mechanistic View," International Journal of Pharmaceutics, vol. 499, pp. 29-37, 2016.

A. Kurniawan, S. Hadi, Z. Arifin, Ubaidillah, and Suyitno, "Effect of Sintering Temperature to The Thermal Conductivity of Cu doped ZnO," presented at the The 1st International Conference on Engineering Technology and Industrial Application, Surakarta, 2014.

A. Kurniawan, B. Prabandono, and Sularman, "Studi Eksperimental Nilai Kekerasan Semikonduktor ZnO terhadap Variasi Beban Kompaksi " POLITEKNOSAINS, vol. XV, pp. 30-35, 2016.




DOI: https://doi.org/10.18196/jmpm.2226

Refbacks

  • There are currently no refbacks.


 


Editorial Office :

JMPM (Jurnal Material dan Proses Manufaktur)

Department of Mechanical Engineering, Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.

Jl. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia

Email: jmpm@umy.ac.id

 (62)274-387656     (62)274-387656