Simulasi Penerapan End Plate Wing Tip Devices pada Pesawat Model UAV Jenis Glider
Main Article Content
Abstract
Aliran udara yang bergerak dari tekanan tinggi ke tekanan rendah menimbulkan pusaran udara pada ujung sayap atau biasa dikenal sebagai wing tip vortices. Wing tip vortices menyebabkan downwash yang mengurangi nilai gaya angkat pada sayap. Berbagai tipe wing tip devices kemudian dirancang untuk mengurangi wing tip vortices, salah satunya adalah wing tip devices jenis end plate. Penelitian pengaruh penerapan wing tip devices dengan variasi sudut kemiringan dapat menggunakan metode pendekatan simulasi. Wing tip devices jenis end plate dirancang dengan desain mengacu pada Withcomb winglet bagian atas. Objek simulasi meliputi pesawat model glider tanpa end plate, menggunakan end plate dengan sudut kemiringan 0o dan end plate dengan sudut kemiringan 15°. Simulasi dilakukan dengan tiga variasi kecepatan jelajah 50, 60, dan 70 km/jam. Hasil simulasi menunjukkan bahwa penerapan end plate dapat meningkatkan nilai gaya angkat. Persentase peningkatan terbesar yaitu 4,1% menggunakan end plate dengan sudut kemiringan 15° pada kecepatan 70 km/jam. Persentase penurunan nilai gaya hambat terbesar terjadi pada konfigurasi end plate dengan sudut kemiringan 15° pada kecepatan 50 km/jam yaitu sebesar 1,04%. Hasil kontur dan iso surface menunjukkan bahwa penerapan end plate pada ujung sayap menjadikan distribusi tekanan lebih merata di permukaan sayap sehingga terjadi peningkatan nilai gaya angkat.
Air flow moving from high pressure to low pressure produces vortex at wing tip known as wing tip vortices. Wing tip vortices generate downwash flow and reduce distribution of pressure on the wing. Many types of wing tip devices had been designed to reduce wing tip vortices effect, one of the design is known as end plate wing tip devices. Research of wing tip devices with cant angle variation can be conducted by simulation approach. The end plate wing tip devices has been designed according to the upper section of with comb winglet. The object of simulation was a glider plane model without end plate, end plate with cant angel 0° and 15°. Simulation had been observed with three variations of cruising speed: 50, 60, and 70 km/h. Simulation result shows the 15° end plate can increase 4.1% lift at 70 km/h, and reduce 1.04% drag at 50 km/h compared to wing tip without end plate. Contour and iso surface result the end plate make pressure distribution on wing pressure more uniform and generated more lift.
Article Details
License
JMPM (Jurnal Material dan Proses Manufaktur) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. You are free to :
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms, which include the following:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
References
P. Panagiotou and K. Yakinthos, “Aerodynamic efficiency and performance enhancement of fixed-wing UAVs,” Aerosp. Sci. Technol., vol. 99, p. 105575, 2020.
S. G. Kontogiannis and J. A. Ekaterinaris, “Design, performance evaluation and optimization of a UAV,” Aerosp. Sci. Technol., vol. 29, no. 1, pp. 339–350, 2013.
J. Masud, Z. Toor, F. Akram, Z. Abbas, and U. Ahsun, “Part II: Winglet design and optimization for a low-speed subsonic UAV wing,” in 55th AIAA Aerospace Sciences Meeting, no. 210059, 2017.
P. Panagiotou, P. Kaparos, and K. Yakinthos, “Winglet design and optimization for a MALE UAV using CFD,” Aerosp. Sci. Technol., vol. 39, pp. 190–205, 2014.
S. Rajendran, “Design of Parametric Winglets and Wing tip devices – A Conceptual Design Approach,” PhD Thesis. Linkoping studies in Science and Technology, 2012.
W. Yamazaki, K. Matsushima, and K. Nakahashi, “Aerodynamic design optimization using the drag-decomposition method,” AIAA J., vol. 46, no. 5, pp. 1096–1106, 2008.
Azmi A. Azhim, “Perancangan Sistem Unmanned Aerial Vehicle (UAV) Pada Pesawat Model Solfix.” Yogyakarta: Program Studi Teknik Mesin Universitas Muhammadiyah Yogyakarta, 2014.
S. P. Setyo Hariyadi, W. A. Widodo, M. A. Mustaghfirin, and A. Rachmadiyan, “Numerical study of flow characteristics on wing airfoil eppler 562 with whitcomb winglet variations,” MATEC Web Conf., vol. 204, p. 04009, 2018.
A. Rajesh, R. A, Badri, and M. S. G. Prasad, “Numerical analysis on the effect of fluidic on demand winglet on the aerodynamic performance of the wing,” J. Aeronaut. Aerosp. Eng., vol. 6, no. 03, pp. 198-2013, 2017.
A. Büscher, R. Radespiel, and T. Streit, “Modelling and design of wing tip devices at various flight conditions using a databased aerodynamic prediction tool,” Aerosp. Sci. Technol., vol. 10, no. 8, pp. 668-678, 2006.