Sifat Tarik dan Struktur Mikro Sambungan Las Gesek Tak Sejenis Baja-Tembaga
Abstract
Abstrak
Tembaga dikenal memilki keunggulan sifat fisis sehingga sering diaplikasikan bersamaan dengan baja menggunakan teknik brazing yang membutuhkan filler. Friction welding memberikan alternatif penyambungan tak sejenis tanpa filler dan asap. Penelitian ini dilakukan untuk mengetahui efek tekanan gesek terhadap sifat mekanis sambungan las gesek pada sambungan dissimilar baja-tembaga. Silinder tembaga dan baja dibubut menjadi bentuk setengah bagian dari benda uji standar JIS Z 2201. Proses pengelasan dilakukan pada putaran 1000 rpm dengan variasi tekanan gesek sebesar 30, 35, dan 40 MPa dengan tekanan tempa 80 MPa. Waktu gesek dan waktu tempa masing-masing 5 detik. Hasil penyambungan masing-masing diamati struktur mikro, kekerasan dan sifat tariknya. Hasil penelitian menunjukkan bahwa dengan meningkatnya tekanan gesek maka daerah TMAZ melebar. Struktur mikro berbutir halus teramati di bagian baja, sedangkan di daerah tembaga, orientasi butir berubah memanjang searah dengan permukaan sambungan. Pada daerah termomechanically affected zone (TMAZ) dan welding center zone (WCZ) kekerasan masing-masing logam turun seiring dengan kenaikan tekanan gesek. Lebar daerah TMAZ yang cukup membuat kekuatan tarik tertinggi diperoleh dari spesimen dengan variasi 35 MPa sebesar 89 MPa. Metode las ini dapat digunakan untuk penyambungan logam tak sejenis baja-tembaga dengan memperhitungkan luasan daerah TMAZ.
Abstract
Copper is often used along with steel due to it excellence properties by using brazing technique. Friction welding technique offers an alternative technique for joining dissimilar metal without fillers and smoke. This research purpose is to study the effect of the friction pressure on the mechanical properties of steel-cooper friction welded joints. Copper and steel bars were turned into half the shape of the specimen according to JIS Z 2201. The welding process was carried out at a speed of 1000 rpm with the friction pressures of 30, 35, and 40 MPa under an upset stress of 80 MPa for 5 seconds of friction time and upset time. The results showed that with increasing friction pressure the TMAZ area was widened in fine grained microstructure for the steel region. Whereas in the copper region, the orientation of elongated grains inline with the direction of the joining surface. In the TMAZ and WCZ areas the hardness of each metal decreases with increasing friction pressure. The sufficient width of the TMAZ results in the highest tensile strength of 89 MPa. It was obtained from the specimens with friction pressure of 35 MPa. This welding method is potentially used for dissimilar steel-copper joint by considering the area of the TMAZ region.
Keywords: Friction welding, dissimilar metals joint, pressure friction, TMAZ
Keywords
Full Text:
PDFReferences
Li P, Li J, Dong H, Ji C. Metallurgical and mechanical properties of continuous drive friction welded copper/alumina dissimilar joints. Materials & Design. 2017;127:311-9.
Yazdipour A, Heidarzadeh A. Effect of friction stir welding on microstructure and mechanical properties of dissimilar Al 5083-H321 and 316L stainless steel alloy joints. Journal of Alloys and Compounds. 2016;680:595-603.
Wei Y, Li J, Xiong J, Huang F, Zhang F, Raza SH. Joining aluminum to titanium alloy by friction stir lap welding with cutting pin. Materials characterization. 2012;71:1-5.
Ohkubo Y, Iwamura S, Hatta H. Thermal analysis on friction welding of carbon steel tube and AA5154 aluminum tube. Sumitomo Light Metal Technical Reports. 2007;48(1):27.
Seli H, Ismail AIM, Rachman E, Ahmad ZA. Mechanical evaluation and thermal modelling of friction welding of mild steel and aluminium. Journal of Materials Processing Technology. 2010;210(9):1209-16.
Fukumoto S, Tsubakino H, Okita K, Aritoshi M, Tomita T. Amorphization by friction welding between 5052 aluminum alloy and 304 stainless steel. Scripta Materialia. 2000;42(8).
Fukumoto S, Tsubakino H, Okita K, Aritoshi M, Tomita T. Friction welding process of 5052 aluminium alloy to 304 stainless steel. Materials Science and Technology. 1999;15(9):1080-6.
Sahin M. Joining of stainless-steel and aluminium materials by friction welding. The International Journal of Advanced Manufacturing Technology. 2009;41(5-6):487-97.
Kusuda Y. Honda develops robotized FSW technology to weld steel and aluminum and applied it to a mass‐production vehicle. Industrial Robot: An International Journal. 2013.
Kimura M, Kusaka M, Kaizu K, Fuji A. Effect of friction welding condition on joining phenomena and tensile strength of friction welded joint between pure copper and low carbon steel. Journal of Solid Mechanics and Materials Engineering. 2009;3(2):187-98.
Jayabharath K, Ashfaq M, Venugopal P, Achar D. Investigations on the continuous drive friction welding of sintered powder metallurgical (P/M) steel and wrought copper parts. Materials Science and Engineering: A. 2007;454:114-23.
Wei Y, Sun F. Microstructures and mechanical properties of Al/Fe and Cu/Fe joints by continuous drive friction welding. Advances in Materials Science and Engineering. 2018;2018.
Kurt A, Uygur I, Paylasan U. Effect of friction welding parameters on mechanical and microstructural properties of dissimilar AISI 1010-ASTM B22 joints. Welding journal. 2011;90(5):102-6.
Luo J, Xiang J, Liu D, Li F, Xue K. Radial friction welding interface between brass and high carbon steel. Journal of Materials Processing Technology. 2012;212(2):385-92.
Wang Y, Luo J, Wang X, Xu X. Interfacial characterization of T3 copper/35CrMnSi steel dissimilar metal joints by inertia radial friction welding. The International Journal of Advanced Manufacturing Technology. 2013;68(5-8):1479-90.
Vairamani G, Kumar TS, Malarvizhi S, Balasubramanian V. Application of response surface methodology to maximize tensile strength and minimize interface hardness of friction welded dissimilar joints of austenitic stainless steel and copper alloy. Transactions of Nonferrous Metals Society of China. 2013;23(8):2250-9.
DOI: https://doi.org/10.18196/jmpm.3133
Refbacks
- There are currently no refbacks.
Editorial Office :
JMPM (Jurnal Material dan Proses Manufaktur)
Department of Mechanical Engineering, Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.
Jl. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia
Email: jmpm@umy.ac.id
(62)274-387656 (62)274-387656