Degumming, Perlakuan Alkali, dan Karakterisasi Serat Pandan Berduri (Pandanus tectorius)
Main Article Content
Abstract
Abstrak
Penelitian ini bertujuan untuk mengetahui pengaruh parameter degumming terhadap sifat tarik serat pandan berduri (Pandanus Tectorius). Daun pandan berduri lokal direndam dalam waterbath pada suhu 95˚C selama 1, 2, 3, atau 4 jam, kemudian dipres untuk diambil seratnya. Serat kemudian direndam dalam larutan NaOH dengan kadar 2,5 wt% atau 5 wt% selama 2 jam. Selanjutnya, proses dilanjutkan dengan menetralisasi dengan direndam dalam air bersih selama 8×6jam dan dikeringkan pada suhu kamar. Uji tarik dilakukan untuk mengetahui kuat tarik, regangan dan modulus elastisitas serat. Pemisahan serat dari daun pandan berduri berhasil dilakukan. Hasil uji tarik menunjukkan bahwa serat yang dialkalisasi dengan NaOH 5 wt% diperoleh kuat tarik yang lebih rendah dibandingkan dengan yang konsentrasi NaOH-nya 2,5 wt%. Pada kadar NaOH 2,5 wt%, naiknya lama waktu perendaman sampai dengan 3 jam juga akan menaikkan kuat tarik serat. Kuat tarik, regangan patah dan modulus elastisitas tertinggi diperoleh dengan perlakuan alkali dengan kadar NaOH 2,5 wt%. Kuat tarik, regangan patah dan modulus elastisitas tertinggi, berturut-turut 203,02 MPa, 3,733% dan 11,938 GPa, diperoleh dari lama waktu perendaman 3 jam.
Abstract
The objective of this research is to determine the effect of degumming parameters on tensile properties of the resulted local (Pandanus Tectorius) fiber. Prickly pandanus leaves were soaked in a waterbath containing plain water at 95˚C for either 1, 2, 3, or 4 hours, then pressed to yield their fibers. The fibers were then soaked in a solution containing either 2,5 wt% or 5 wt% of NaOH for 2 hours. Next, the fibers were neutralized by soaking them in plain water for 8×6 hours, and slowly dried at room temperature. Tensile test was carried out to obtain the tensile strength, strain-to-failure and modulus of the fibers. Fiber separation from Pandanus Tectorius leaves has successfully been carried out. It was found out that pretreatment using 2,5 wt% NaOH content solution produced higher tensile strength, strain-to-failure and elastic modulus in comparison with those using 5 wt% NaOH content solution. Tensile properties increases with the increase of soaking time up to 3 hours. The highest tensile strength, strain-to-failure and modulus, 203.02 MPa, 3.733 % and 11.938 GPa, respectively, were obtained at 3 hours of soaking time.
Article Details
License
JMPM (Jurnal Material dan Proses Manufaktur) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. You are free to :
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms, which include the following:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
References
Campbell, F.C. Chapter 1. Introduction to Composite Materials, in Campbell, F.C.: Structural Composite Materials. Metals Park: ASM International: 1-30, 2010.
Rajak, D.P., Pagar, D.D., Menezes, P.L., Linul, E., “Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications”, Polymers, vol.11, no.10, pp 1167, 2019.
Lebreton, L.C.M., van der Zwet, J., Damsteeg, J.W., Slat, B., Andrady, A., Reisser, J., “River Plastic Emissions to the World’s Oceans, Nature Communications 8: 15611, 2017.
Pickering, K.L., Efendy, M.G.A., Le, T.M., “A review of recent developments in natural fibre composites and their mechanical performance”, Composites: Part A 83: 98–112, 2016.
Subyakto, Gopar, M., 2009, “Tinjauan Penelitian Terkini tentang Pemanfaatan Komposit Serat Alam untuk Komponen Otomotif”, Journal of Tropical Wood Science & Technology, vol. 7, no.2, pp 92-97, 2016.
Fidelis, M.E.A., Pereira, T.V.C., Gomes, O.F.M., Silva, F.A., Filho, R.D.T., “The Effect of Fiber Morphology on the Tensile Strenght Natural Fibers”, Journal of Materials Research and Technology, vol. 2, no.2, pp. 149-157, 2013.
“ASTM D339, Standard Test Method for Tensile Strength and Young’s Modulus for High-Modulus Single-Filament Materials” ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, USA.
National Institutes of Health (NIH), U.S. Department of Health.
Gurunathan, T., Mohanty, S., Nayak, S.K., “Review of the Recent Developments in Biocomposites Based on Natural Fibres and Their Application Perspectives”, Composites : Part A vol.77, no.4,pp. 1–25, 2015.
Sosiati, H., Nahyudin, A., Wijayanti, D.A., Triyana, K., Sudarisman, “Effect of Alkali Treatment and MAPP Addition on Tensile Strength of Sisal/Polypropylene Composites”, Journal of Advanced Manufacturing Technology, vol. 12, no.2, pp. 65-79, 2018.
Peças, P., Carvalho, H., Salman, H., Leite, M., “Natural Fibre Composites and Their Applications, A Review”, Journal of Composites Science, vol.2, no.4, pp. 66, 2018.