Optimasi Pembuatan Scaffold dengan Struktur Pori-Pori Beraturan Menggunakan Metode Response Surface Method
Main Article Content
Abstract
Cedera yang diakibatkan kecelakaan lalu lintas dapat menyebabkan korban menderita patah tulang, cacat tubuh, hingga kematian. Korban yang mengalami kerusakan tulang dapat disembuhkan dengan restorasi tulang, yaitu dengan menanamkan tulang buatan pada jaringan tulang yang rusak. Salah satu contoh metode implan adalah dengan membuat scaffold yang terbuat dari biomaterial hidroksiapatit (HA). scaffold dirancang bersarkan pada ukuran kerusakan tulang, dan dicetak dengan mesin cetak 3D ABEF (Aqueous-based extraction fabrication). Penelitian terkait pengoptimalan pembuatan scaffold dilakukan menggunakan Response Surface Method, dengan menggunakan grafik kontur plot dan response optimizer. Parameter pembuatan scaffold yang dioptimasikan adalah kecepatan gerak sumbu, kecepatan ekstrusi, dan diameter nozzle. Analisis ini bertujuan untuk menemukan nilai kesalahan terkecil dari pembuatan scaffold, sehingga didapatkan bentuk scaffold yang optimal dari dimensi scaffold dan ukuran rongga. Berdasarkan hasil penelitian, optimasi pembuatan scaffold menggunakan Response Surface Method menghasilkan kombinasi parameter pembentuk scaffold, dengan kecepatan ekstrusi 30 mm / s, kecepatan sumbu 30 mm / s, dan diameter nozzle 0,8 mm.
Injuries caused by traffic accidents can cause victims to suffer broken bones, disability, and even death. Victims who have bone damage can be cured by bone restoration, which is by implanting artificial bone in damaged bone tissue. One example of an implant method is to make a scaffold made from hydroxyapatite (HA) biomaterials. The scaffold is designed based on the size of the bone damage, and is printed with a 3D ABEF (Aqueous-based extraction fabrication) printing machine.Research related to optimizing scaffold making is done using the Response Surface Method, using plot contour graphs and response optimizers. Optimized scaffold manufacturing parameters are the axis of movement speed, extrusion speed, and nozzle diameter. This analysis aims to find the smallest error value from making scaffold, so we get the optimal form of scaffold from scaffold dimensions and cavity size. Based on the research results, optimization of scaffold making using the Response Surface Method produces a combination of scaffold forming parameters, with an extrusion speed of 30 mm / s, an axis speed of 30 mm / s, anda nozzle diameter of 0.8 mm
Article Details
License
JMPM (Jurnal Material dan Proses Manufaktur) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. You are free to :
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms, which include the following:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
References
Septyawan, D, Pembuatan dan Karakteristik Macroporous Hydroxipatite Bioceramics dengan Struktur Tidak Beratur dengan Foaming Method. Skripsi Teknik Mesin. Yogyakarta: Universitas Gadjah Mada. 2014
Hench, L.L. An Introduction to Bioceramic-2nd Ed. London: Imperial College Press. 2013
Ratner, B., Hoffman, A., Schoen F., Lemons, J. Biomaterial Science: An Introduction to Material in Medicine. Academic Press. 2012
Ardhiyanto, H.B. Peran Hidroksiapatit sebagai Bone Graft dalam penyembuhan tulang dan gigi. 2011. UNEJ: Jurnal Kedokteran Gigi; Vol 8 No.2. pp 118-121
Rahmitasari, F.I. Kitosan Dan Kolagen Sebagai Graft Pada Kasus Kerusakan Tulang (Studi Pustaka). 2016. UHT: Jurnal Material Kedokteran Gigi; Vol 5. No. 02. Pp 1-7
Wiliam, D.F., Definition of Biomaterials,. New York: Elsevier. 1987
Vallet-regi,M. Ceramics for Medical Applications. 2001. Journal of The Chemical Society, Vol. 1. Pp 77-88
Heimann, R.B. and Leihmann, H.D. Bioceramic Coating for Medical Implant: Trend and Technique. Weinheum: Wiley-VCH. 2015
Mason, M.S., Huang, T., Landers, R.G., Leu, M.C., and Hilmas, G.E. Aqueous-based extrusion of high solids loading ceramic pastes: Process modeling and control. 2009. Journal of Materials Processing Technology. Vol.209, pp.2946–2957
Huang, T., Mason, M.S., Zhao, X., Hilmas, G.E., and Leu, M.G. Aqueous- based freeze-form extrusion fabrication of alumina components. 2009. Journal Rapid Prototyping. Vol.15. pp.88-95
Myres, R.H., Khuri, A.I., Carter,W.H., Response Surface Methodology. 1989. Journal Article. Vlo.31, NO.2. pp 137-157
Salgado, A.J., Coutinho, O.P., Reis, R.L. Bone tissue engineering: state of the art and future trends. 2004. Journal of Macromolecular bioscience, Vol.4, pp.743-765.
Kaplan, D., & Karageorgiou, V. Porosity of 3D Biomaterial Scaffolds and Osteogenesis. 2005. Biomaterial journal, Vol. 26, pp. 5474-5491.
Utami, A.D.,. Pembuatan Dan Karakterisasi Macroporous Hydroxyapatite Bioceramics Dengan Struktur Beraturan Menggunakan Manually Extrusion Deposition Method. Skripsi. Yogyakarta: Universitas Gadjah Mada, Yogyakarta. 2014
Mason, M.S., Huang, T., Landers, R.G., Leu, M.C., dan Hilmas, G.E. Aqueous-based extrusion fabrication of ceramics on demand. Journal of Materials Processing Technology. 2007. Vol. 30. pp. 124-134