Ultrasonic Cleaner Dilengkapi Heater dan Pembuangan Air Otomatis Berbasis Mikrokontroller

Authors

  • Meilia Safitri Program Studi D3 Teknologi Elektro-medis, Program Vokasi, Universitas Muhammadiyah Yogyakarta
  • Amanda Sri Wahyuni Program Studi D3 Teknologi Elektro-medis, Program Vokasi, Universitas Muhammadiyah Yogyakarta
  • Aidatul Fitriyah Program Studi D3 Teknologi Elektro-medis, Program Vokasi, Universitas Muhammadiyah Yogyakarta

DOI:

https://doi.org/10.18196/mt.v4i1.14304

Keywords:

Cavitation, Pembuangan Air Otomatis, Ultrasonic Cleaner.

Abstract

Ultrasonic cleaner merupakan alat pembersih yang memanfaatkan gelombang ultrasonic untuk memecah partikel yang menempel. Gelombang ini dihasilkan dari getaran atau vibrasi yang keluar melalui tranduser ultrasonic. Ultrasonic cleaner biasanya digunakan untuk membersihkan peralatan medis seperti peralatan bedah, alat-alat laboratorium, serta beberapa alat optik sebelum dilakukan proses sterilisasi. Penelitian ini bertujuan untuk merancang dan mengimplentasikan ultrasonic cleaner dengan menggunakan gelombang ultrasonic dengan frekuensi 40 kHz. Untuk mempersingkat waktu pembersihan, alat ini menggunakan metode cavitation yakni pemanfaatan pemanas dengan suhu 50℃ bertujuan agar cairan pembersih mudah larut sehingga dapat melebur kesegala arah pada instrument bedah yang sedang dibersihkan. Selain itu, sistem pembuangan air secara otomatis juga dirancang untuk menghindari kontak langsung antara tenaga medis dengan peralatan medis, karena virus atau bakteri dapat menempel pada peralatan setelah operasi. Berdasarkan hasil uji fungsi yang telah dilakukan, semua tombol, display, serta sistem pembuangan air secara otomatis berfungsi dengan baik dan dapat digunakan sebagaimana semestinya. Disamping itu, Alat ini menunjukkan kemampuan yang baik dalam penurunan angka kuman sebesar 99,52%. Rata-rata error terbesar saat pengujian timer adalah 0,1%. Hasil pengujian suhu saat pembersihan memiliki rata-rata error sebesar 5,3%.


Warning: file_put_contents(): Only 0 of 23 bytes written, possibly out of free disk space in /var/www/ojs-3.2.1-5/lib/pkp/classes/cache/FileCache.inc.php on line 90

References

M. Safitri and G. A. Dinata, "Non-Contact Thermometer Berbasis Infra Merah," Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer;, vol. 10, no. 1, 2019, doi: https://doi.org/10.24176/simet.v10i1.2647.

O. Tommiska et al., "FEM-based time-reversal technique for an ultrasonic cleaning application," Applied Acoustics, vol. 193, p. 108763, 2022/05/01/ 2022, doi: https://doi.org/10.1016/j.apacoust.2022.108763.

X. Xu et al., "Novel ultrasonic-assisted cleaner technology for cocoon brushing at low temperature," Journal of Cleaner Production, vol. 359, p. 132070, 2022/07/20/ 2022, doi: https://doi.org/10.1016/j.jclepro.2022.132070.

Z.-C. Zhang, X.-Q.-Y. Zhang, and M. Hu, "Simple ultrasonic-assisted clean graphene transfer," Journal of Electronic Science and Technology, p. 100168, 2022/08/05/ 2022, doi: https://doi.org/10.1016/j.jnlest.2022.100168.

J. Guo, Y.-Y. Bian, K.-X. Zhu, X.-N. Guo, W. Peng, and H.-M. Zhou, "Reducing phytate content in wheat bran by directly removing the aleurone cell content with teeth roller mill and ultrasonic cleaner," Journal of Cereal Science, vol. 64, pp. 133-138, 2015/07/01/ 2015, doi: https://doi.org/10.1016/j.jcs.2015.03.012.

H. Hatta et al., "A simple and rapid decalcification procedure of skeletal tissues for pathology using an ultrasonic cleaner with D-mannitol and formic acid," Acta Histochemica, vol. 116, no. 5, pp. 753-757, 2014/06/01/ 2014, doi: https://doi.org/10.1016/j.acthis.2014.01.006.

M. Safitri, A. Pranaditya, B. Handoko, and S. Anggoro, "Design and implementation of automatic autoclave temperature and pressure data recording system," IOP Conference Series: Materials Science and Engineering, vol. 1088, no. 1, p. 012081, 2021/02/01 2021, doi: 10.1088/1757-899x/1088/1/012081.

I. D. Syahwir; and V. Firmansyah, "Perbandingan Pembersihan Material Berbahan Stainless Steel Menggunakan Ultrasonic Cleaner dan Pembersihan Biasa," Jurnal Material dan Energi Indonesia, vol. 8, no. 2, 2018, doi: https://doi.org/10.24198/jmei.v8i2.18688.

S. Asif et al., "Cleaner production of methyl ester from non-edible feedstock by ultrasonic-assisted cavitation system," Journal of Cleaner Production, vol. 161, pp. 1360-1373, 2017/09/10/ 2017, doi: https://doi.org/10.1016/j.jclepro.2017.02.081.

M. Ben Ticha et al., "Ultrasonic extraction of Parthenocissus quinquefolia colorants: Extract identification by HPLC-MS analysis and cleaner application on the phytodyeing of natural fibres," Dyes and Pigments, vol. 141, pp. 103-111, 2017/06/01/ 2017, doi: https://doi.org/10.1016/j.dyepig.2017.02.002.

M.-N. Pak, S.-C. Kim, S.-I. Sin, K.-C. Kim, and S.-S. Pak, "Research on the ultrasonic driving circuit of music rhythm driven method to suppress the noise of ultrasonic cleaner," Applied Acoustics, vol. 195, p. 108845, 2022/06/30/ 2022, doi: https://doi.org/10.1016/j.apacoust.2022.108845.

T. Charasseangpaisarn and C. Wiwatwarrapan, "The effect of various frequencies of ultrasonic cleaner in reducing residual monomer in acrylic resin," Ultrasonics, vol. 63, pp. 163-167, 2015/12/01/ 2015, doi: https://doi.org/10.1016/j.ultras.2015.07.005.

J.-h. Bae, S.-b. Do, S.-h. Cho, K.-m. Lee, S.-E. Lee, and T.-O. Kim, "TiO2 treatment using ultrasonication for bubble cavitation generation and efficiency assessment of a dye-sensitized solar cell," Ultrasonics Sonochemistry, vol. 83, p. 105933, 2022/02/01/ 2022, doi: https://doi.org/10.1016/j.ultsonch.2022.105933.

H. Xu, J. Tu, F. Niu, and P. Yang, "Cavitation dose in an ultrasonic cleaner and its dependence on experimental parameters," Applied Acoustics, vol. 101, pp. 179-184, 2016/01/01/ 2016, doi: https://doi.org/10.1016/j.apacoust.2015.08.020.

Downloads

Published

2022-10-27

Issue

Section

Articles