Implementasi Algoritma Kompresi Data untuk Meningkatkan Kinerja Pendeteksian Gangguan Kualitas Daya Listrik
DOI:
https://doi.org/10.18196/mt.v5i1.18386Keywords:
Algoritma Kompresi, CNN, Framework Klasifikasi.Abstract
Resiko terjadinya penurunan kualitas daya listrik dapat terjadi pada banyak tahapan yaitu, produksi, transformasi, distribusi, dan konsumsi energi. Salah satu cara untuk menangani masalah kualitas daya adalah dengan melakukan deteksi dan klasifikasi gangguan kualitas daya atau dalam istilah asing disebut Power Quality Disturbances (PQDs). Namun, penelitian sebelumnya hanya berfokus pada topik berikut: gangguan kebisingan (noise), kegagalan model dalam menggeneralisasi data (overfitting), dan waktu yang diperlukan untuk pelatihan dataset. Sebuah strategi baru disarankan untuk mengatasi masalah ini dengan menggabungkan kompresi dataset sinyal 1-Dimensi dengan algoritma klasifikasi convolutional neural network (CNN). Dua jenis algoritma kompresi yang diusulkan untuk dievaluasi adalah wavelet transform (WT) dan autoencoder. Data yang digunakan untuk evaluasi adalah kumpulan data sintetik menurut standar IEEE-1159, yaitu empat belas tipe PQDs yang berbeda. Selanjutnya, prosedur klasifikasi PQDs akan mengintegrasikan data terkompresi dengan algoritma klasifikasi CNN. Hasil akhir penelitian memperlihatkan, metode yang disarankan menunjukkan bahwa menggabungkan algoritma kompresi autoencoder dan metode klasifikasi CNN dapat mengenali PQDs secara efisien. Bahkan di lingkungan dengan tingkat noise 20db, pemrosesan sinyal PQDs mencapai akurasi hingga 97,14 persen dan berhasil memperkecil overfitting.References
Y.-C. Chen, M. Syamsudin, and W. Xu, "An Internet of Things Thermostat Sensor Developed with an Arduino Device Using a Recursively Digital Optimization Algorithm," J. Inf. Hiding Multim. Signal Process., vol. 10, no. 3, pp. 434-446, 2019.
R. Singh, S. R. Mohanty, N. Kishor, and A. Thakur, "Real-time implementation of signal processing techniques for disturbances detection," IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3550-3560, 2018.
Y.-C. Chen, M. Syamsudin, and S. S. Berutu, "Pretrained Configuration of Power-Quality Grayscale-Image Dataset for Sensor Improvement in Smart-Grid Transmission," Electronics, vol. 11, no. 19, p. 3060, 2022.
M. Schael and C. Sourkounis, "Influences of power supply quality on electric equipment in production processes," in IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, 2013: IEEE, pp. 2081-2086.
M. Pérez-Ortiz, S. Jiménez-Fernández, P. A. Gutiérrez, E. Alexandre, C. Hervás-Martínez, and S. Salcedo-Sanz, "A review of classification problems and algorithms in renewable energy applications," Energies, vol. 9, no. 8, p. 607, 2016.
B. Eristi, O. Yildirim, H. Eristi, and Y. Demir, "A new embedded power quality event classification system based on the wavelet transform," International Transactions on Electrical Energy Systems, vol. 28, no. 9, p. e2597, 2018.
S. Chen and H. Y. Zhu, "Wavelet transform for processing power quality disturbances," EURASIP Journal on Advances in Signal Processing, vol. 2007, pp. 1-20, 2007.
Y. Shen, M. Abubakar, H. Liu, and F. Hussain, "Power quality disturbance monitoring and classification based on improved PCA and convolution neural network for wind-grid distribution systems," Energies, vol. 12, no. 7, p. 1280, 2019.
X. Huang, T. Hu, C. Ye, G. Xu, X. Wang, and L. Chen, "Electric load data compression and classification based on deep stacked auto-encoders," Energies, vol. 12, no. 4, p. 653, 2019.
Y.-C. Chen, S. S. Berutu, L.-C. Hung, and M. Syamsudin, "A New Approach for Power Signal Disturbances Classification Using Deep Convolutional Neural Networks," 2023.
Y. Chen, "Improved energy detector for random signals in Gaussian noise," IEEE Transactions on Wireless Communications, vol. 9, no. 2, pp. 558-563, 2010.
J. Ning, J. Wang, W. Gao, and C. Liu, "A wavelet-based data compression technique for smart grid," IEEE Transactions on Smart Grid, vol. 2, no. 1, pp. 212-218, 2010.
C.-I. Chen, S. S. Berutu, Y.-C. Chen, H.-C. Yang, and C.-H. Chen, "Regulated Two-Dimensional Deep Convolutional Neural Network-Based Power Quality Classifier for Microgrid," Energies, vol. 15, no. 7, p. 2532, 2022.
M. Syamsudin, "Power Quality Disturbances Recognition Using a Pretrained Algorithm and an Efficient Compression Combination Framework," Asia University, 2022.
Y.-C. Chen, M. Syamsudin, and S. Berutu, "Regulated 2D Grayscale Image for Finding Power Quality Abnormalities in Actual Data," in Journal of Physics: Conference Series, 2022, vol. 2347, no. 1: IOP Publishing, p. 012018.
X. Ying, "An overview of overfitting and its solutions," in Journal of Physics: Conference Series, 2019, vol. 1168, no. 2: IOP Publishing, p. 022022.
Downloads
Published
Issue
Section
License
Copyright Agreement and License
In order to be accepted and published by Medika Teknika : Jurnal Teknik Elektromedik Indonesia, author(s) submitting the article manuscript should complete all the review stages. By submitting the manuscript, the author(s) agreed to the following terms:
The copyright of received articles shall be assigned to Medika Teknika : Jurnal Teknik Elektromedik Indonesia as the publisher of the journal. The intended copyright includes the rights to publish articles in various forms (including reprints Medika Teknika : Jurnal Teknik Elektromedik Indonesia maintain the publishing rights to the published articles. Authors are permitted to disseminate published articles by sharing the link/DOI of the article at Medika Teknika : Jurnal Teknik Elektromedik Indonesia. Author are allowed to use their articles for any legal purposes deemed necessary without written permission from Medika Teknika : Jurnal Teknik Elektromedik Indonesia with an acknowledgment of initial publication to this journal.
LicenseAll articles published in Medika Teknika : Jurnal Teknik Elektromedik Indonesia are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC-BY-NC).