Implementasi Algoritma Kompresi Data untuk Meningkatkan Kinerja Pendeteksian Gangguan Kualitas Daya Listrik

Mariana Syamsudin

Abstract


Resiko terjadinya penurunan kualitas daya listrik dapat terjadi pada banyak tahapan yaitu, produksi, transformasi, distribusi, dan konsumsi energi. Salah satu cara untuk menangani masalah kualitas daya adalah dengan melakukan deteksi dan klasifikasi gangguan kualitas daya atau dalam istilah asing disebut Power Quality Disturbances (PQDs). Namun, penelitian sebelumnya hanya berfokus pada topik berikut: gangguan kebisingan (noise), kegagalan model dalam menggeneralisasi data (overfitting), dan waktu yang diperlukan untuk pelatihan dataset. Sebuah strategi baru disarankan untuk mengatasi masalah ini dengan menggabungkan kompresi dataset sinyal 1-Dimensi dengan algoritma klasifikasi convolutional neural network (CNN). Dua jenis algoritma kompresi yang diusulkan untuk dievaluasi adalah wavelet transform (WT) dan autoencoder. Data yang digunakan untuk evaluasi adalah kumpulan data sintetik menurut standar IEEE-1159, yaitu empat belas tipe PQDs yang berbeda. Selanjutnya, prosedur klasifikasi PQDs akan mengintegrasikan data terkompresi dengan algoritma klasifikasi CNN. Hasil akhir penelitian memperlihatkan, metode yang disarankan menunjukkan bahwa menggabungkan algoritma kompresi autoencoder dan metode klasifikasi CNN dapat mengenali PQDs secara efisien. Bahkan di lingkungan dengan tingkat noise 20db, pemrosesan sinyal PQDs mencapai akurasi hingga 97,14 persen dan berhasil memperkecil overfitting.

Keywords


Algoritma Kompresi; CNN; Framework Klasifikasi.

Full Text:

PDF

References


Y.-C. Chen, M. Syamsudin, and W. Xu, "An Internet of Things Thermostat Sensor Developed with an Arduino Device Using a Recursively Digital Optimization Algorithm," J. Inf. Hiding Multim. Signal Process., vol. 10, no. 3, pp. 434-446, 2019.

R. Singh, S. R. Mohanty, N. Kishor, and A. Thakur, "Real-time implementation of signal processing techniques for disturbances detection," IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3550-3560, 2018.

Y.-C. Chen, M. Syamsudin, and S. S. Berutu, "Pretrained Configuration of Power-Quality Grayscale-Image Dataset for Sensor Improvement in Smart-Grid Transmission," Electronics, vol. 11, no. 19, p. 3060, 2022.

M. Schael and C. Sourkounis, "Influences of power supply quality on electric equipment in production processes," in IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, 2013: IEEE, pp. 2081-2086.

M. Pérez-Ortiz, S. Jiménez-Fernández, P. A. Gutiérrez, E. Alexandre, C. Hervás-Martínez, and S. Salcedo-Sanz, "A review of classification problems and algorithms in renewable energy applications," Energies, vol. 9, no. 8, p. 607, 2016.

B. Eristi, O. Yildirim, H. Eristi, and Y. Demir, "A new embedded power quality event classification system based on the wavelet transform," International Transactions on Electrical Energy Systems, vol. 28, no. 9, p. e2597, 2018.

S. Chen and H. Y. Zhu, "Wavelet transform for processing power quality disturbances," EURASIP Journal on Advances in Signal Processing, vol. 2007, pp. 1-20, 2007.

Y. Shen, M. Abubakar, H. Liu, and F. Hussain, "Power quality disturbance monitoring and classification based on improved PCA and convolution neural network for wind-grid distribution systems," Energies, vol. 12, no. 7, p. 1280, 2019.

X. Huang, T. Hu, C. Ye, G. Xu, X. Wang, and L. Chen, "Electric load data compression and classification based on deep stacked auto-encoders," Energies, vol. 12, no. 4, p. 653, 2019.

Y.-C. Chen, S. S. Berutu, L.-C. Hung, and M. Syamsudin, "A New Approach for Power Signal Disturbances Classification Using Deep Convolutional Neural Networks," 2023.

Y. Chen, "Improved energy detector for random signals in Gaussian noise," IEEE Transactions on Wireless Communications, vol. 9, no. 2, pp. 558-563, 2010.

J. Ning, J. Wang, W. Gao, and C. Liu, "A wavelet-based data compression technique for smart grid," IEEE Transactions on Smart Grid, vol. 2, no. 1, pp. 212-218, 2010.

C.-I. Chen, S. S. Berutu, Y.-C. Chen, H.-C. Yang, and C.-H. Chen, "Regulated Two-Dimensional Deep Convolutional Neural Network-Based Power Quality Classifier for Microgrid," Energies, vol. 15, no. 7, p. 2532, 2022.

M. Syamsudin, "Power Quality Disturbances Recognition Using a Pretrained Algorithm and an Efficient Compression Combination Framework," Asia University, 2022.

Y.-C. Chen, M. Syamsudin, and S. Berutu, "Regulated 2D Grayscale Image for Finding Power Quality Abnormalities in Actual Data," in Journal of Physics: Conference Series, 2022, vol. 2347, no. 1: IOP Publishing, p. 012018.

X. Ying, "An overview of overfitting and its solutions," in Journal of Physics: Conference Series, 2019, vol. 1168, no. 2: IOP Publishing, p. 022022.




DOI: https://doi.org/10.18196/mt.v5i1.18386

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Medika Teknika : Jurnal Teknik Elektromedik Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Medika Teknika : Jurnal Teknik Elektromedik Indonesia is indexed by :


Our Office

Editorial of Medika Teknika UMY, Building D, Jl. Brawijaya, Tamantirto, Kasihan, Bantul, Yogyakarta.

Telp : (0274) 387656, Ext : 455
Fax : (0274) 387646
Email : mt@umy.ac.id

website : http://journal.umy.ac.id/index.php/mt

Creative Commons License
Medika Teknika : Jurnal Teknik Elektromedik Indonesia is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.