Penggunaan Teknik Partial Least Square (PLS) dalam Riset Akuntansi Berbasis Survei
Main Article Content
Abstract
Latar Belakang: Dalam satu dekade terkahir metodologi survei dengan teknik analisis data berbasis metode Partial Least Square telah semakin populer digunakan dalam riset akuntansi, khususnya pada bidang akuntansi sektor publik, akuntansi manajemen, pengauditan, dan sistem informasi akuntansi. Namun demikian, kaidah dan pedoman penggunakan metode ini belum banyak dikupas oleh akademisi akuntansi Indonesia.
Tujuan: Makalah ini bertujuan untuk menutupi celah literatur terkait metode Partial Least Square pada riset akuntansi berbasis survei. Secara spesifik makalah ini menjelaskan metode Partial Least Square dalam hal kaidah, pedoman analisis, serta penerapannya pada riset akuntansi berdasarkan rujukan beberapa literatur dan pengalaman penulis.
Metode: Makalah ini ditulis dengan pendekatan tinjauan literatur yang dikombinasikan dengan pemahaman serta pengalaman penulis.
Hasil: Makalah ini menyoroti pentingnya syarat, kaidah, dan runtutan proses penerapan metode Partial Least Square dalam riset survei di bidang akuntansi. Makalah ini juga menekankan beberapa analisis tambahan yang penting dilakukan untuk memperkuat metode ini.
Keaslian/Kebaruan: Makalah ini menyajikan diskusi yang relatif baru teerkait bagimana seharusnya metode Partial Least Square diterapkan pada riset akuntansi berbasis survei berdasarkan literature terkini dan pengalaman penulis yang telah memublikasi hasil-hasil studinya di berbagai jurnal internasional bereputasi tinggi.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Artikel ini dilisensikan di bawah Creative Commons Attribution 4.0 International (CC BY 4.0), yang mengizinkan penggunaan, distribusi, dan reproduksi dalam media apa pun, selama atribusi yang sesuai diberikan kepada penulis asli dan sumbernya.
References
Bollen, K. A. (2002). Latent variables in psychology and the social sciences. Annual review of psychology, 53(1), 605-634. https://doi.org/10.1146/annurev.psych.53.100901.135239
Chang, S.-J., Witteloostuijn, A. v., & Eden, L. (2020). Common method variance in international business research. In Research methods in international business (pp. 385-398). Springer. https://doi.org/10.1007/978-3-030-22113-3_20
Chin, W. W. (1998a). Commentary: Issues and opinion on structural equation modeling. In (Vol. 22, pp. 7-16): MIS Quarterly.
Chin, W. W. (1998b). The partial least squares approach to structural equation modeling. Modern methods for business research, 295(2), 295-336.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
Goodhue, D. L., Lewis, W., & Thompson, R. (2012). Does PLS have advantages for small sample size or non-normal data? MIS quarterly, 981-1001. https://doi.org/10.2307/41703490
Hair, J., & Alamer, A. (2022). Partial Least Squares Structural Equation Modeling (PLS-SEM) in second language and education research: Guidelines using an applied example. Research Methods in Applied Linguistics, 1(3), 100027. https://doi.org/10.1016/j.rmal.2022.100027
Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2021). A primer on partial least squares structural equation modeling (PLS-SEM). Sage publications. https://doi.org/10.1007/978-3-030-80519-7
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European business review, 31(1), 2-24. https://doi.org/10.1108/EBR-11-2018-0203
Hirose, K., Kawano, S., Miike, D., & Konishi, S. (2010). Hyper-parameter selection in Bayesian structural equation models. https://doi.org/10.5109/25906
Nazaruddin, I., Sofyani, H., & Utami, T. P. (2024). Promoting Performance Measurement System Effectiveness in Higher Education Institution: Antecedents and Consequences. Brazilian Administration Review, 21(2), e230070. https://doi.org/10.1590/1807-7692bar2024230070
Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. Journal of applied psychology, 88(5), 879-903. https://doi.org/10.1037/0021-9010.88.5.879
Saud, I. M., Sofyani, H., Utami, T. P., Haq, M. M., & Fathmaningrum, E. S. (2025). Big data analytics-based auditing adoption in public sector: Indonesian evidence. Cogent Business & Management, 12(1), 2454320. https://doi.org/10.1080/23311975.2025.2454320
Sholihin, M., & Ratmono, D. (2021). Analisis SEM-PLS dengan WarpPLS 7.0 untuk hubungan nonlinier dalam penelitian sosial dan bisnis. Penerbit Andi.
Sofyani, H., & Darma, E. S. (2024). Effect of architecture and efficiency of mobile banking application on the intention to continue using Islamic bank: does data security matter? Journal of Islamic Marketing, 15(6), 1479-1497. https://doi.org/10.1108/JIMA-07-2023-0220
Sofyani, H., Sholihin, M., Saleh, Z., & Isa, C. R. (2025). Testing the mediation effects of contingent factors on the relationship between management control systems and performance in higher education institutions. Journal of Accounting & Organizational Change. https://doi.org/10.1108/JAOC-06-2024-0194
Tehseen, S., Ramayah, T., & Sajilan, S. (2017). Testing and controlling for common method variance: A review of available methods. Journal of management sciences, 4(2), 142-168. https://doi.org/10.20547/jms.2014.1704202
Vinzi, V. E., Chin, W. W., Henseler, J., & Wang, H. (2010). Handbook of partial least squares (Vol. 201). Springer.