Investigasi Kapasitas Energi Termal pada Solar Water Heater Berbasis Kalor Laten dengan Variasi Debit Air
Abstract
Material penyimpan kalor pada solar water heater adalah air sebagai kalor sensibel. Kekurangan air adalah densitas energinya rendah. Material lain adalah dari golongan kalor laten (phase change material, PCM) yang memiliki densitas energi tinggi. Unjuk kerja termal SWH tipe aktif dengan tangki horizontal dan memakai PCM jenis paraffin wax terhadap perubahan debit aliran air belum pernah diungkap. Tujuan penelitian ini adalah untuk mendapatkan karakteristik pengaruh perubahan debit air terhadap kapasitas penyimpanan energi termal di tangki. Penelitian menggunakan SWH dengan tangki yang di dalamnya diletakkan kapsul silinder berisi paraffin wax RT55. Termokopel dipasang di sisi air dan PCM. Eksperimen dilakukan secara indoor memakai solar simulator. Debit aliran air yang digunakan adalah 1 lpm, 2 lpm dan 3 lpm. Penelitian ini mendapatkan hasil yaitu kapasitas energi termal untuk debit aliran tersebut masing-masing adalah 10,45 MJ, 10,59 MJ dan 10,71 MJ. Semakin besar debit air maka kapasitas penyimpanan energi termal semakin tinggi.
Keywords
Full Text:
PDFReferences
Al-Hinti, I., Al-Ghandoor, A., Maaly, A., Naqeera, I. A., Al-Khateeb, Z., & Al-Sheikh, O. (2010). Experimental investigation on the use of water-phase change material storage in conventional solar water heating systems. Energy Conversion and Management, 51(8), 1735-1740. https://doi.org/10.1016/j.enconman.2009.08.038
Badan Pengkajian dan Penerapan Teknologi. (2021, Agustus). Outlook energi Indonesia 2021 perspektif teknologi energi indonesia: tenaga surya untuk penyediaan energi charging station. https://www.bppt.go.id/dokumen/outlook-energi
Badan Pengkajian dan Penerapan Teknologi. (2019, November). Outlook energi Indonesia 2019: dampak peningkatan pemanfaatan energi baru terbarukan terhadap perekonomian nasional. https://www.bppt.go.id/dokumen/outlook-energi
Bouadila, S., Fteïti, M., Oueslati, M. M., Guizani, A., & Farhat, A. (2014). Enhancement of latent heat storage in a rectangular cavity: Solar water heater case study. Energy conversion and management, 78, 904-912. https://doi.org/10.1016/j.enconman.2013.07.094
Bujak, J. (2010). Heat consumption for preparing domestic hot water in hospitals. Energy and Buildings, 42(7), 1047-1055. https://doi.org/10.1016/j.enbuild.2010.01.017
Cárdenas-Ramírez, C., Jaramillo, F., & Gómez, M. (2020). Systematic review of encapsulation and shape-stabilization of phase change materials. Journal of Energy Storage, 30, 101495. https://doi.org/10.1016/j.est.2020.101495
Chargui, R., & Tashtoush, B. (2021). Thermoeconomic analysis of solar water heaters integrating phase change material modules and mounted in football pitches in Tunisia. Journal of Energy Storage, 33, 102129. https://doi.org/10.1016/j.est.2020.102129
Deng, S. (2003). Energy and water uses and their performance explanatory indicators in hotels in Hong Kong. Energy and Buildings, 35(8), 775-784. https://doi.org/10.1016/S0378-7788(02)00238-4
Dhaou, M. H., Mellouli, S., Alresheedi, F., & El-Ghoul, Y. (2022). Experimental assessment of a solar water tank integrated with nano-enhanced PCM and a stirrer. Alexandria Engineering Journal, 61(10), 8113-8122. https://doi.org/10.1016/j.aej.2022.01.040
Facci, A. L., Lauricella, M., Succi, S., Villani, V., & Falcucci, G. (2021). Optimized modeling and design of a PCM-enhanced H2 storage. Energies, 14(6), 1554. https://doi.org/10.3390/en14061554
Fazilati, M. A., & Alemrajabi, A. A. (2013). Phase change material for enhancing solar water heater, an experimental approach. Energy conversion and management, 71, 138-145. https://doi.org/10.1016/j.enconman.2013.03.034
Fukahori, R., Nomura, T., Zhu, C., Sheng, N., Okinaka, N., & Akiyama, T. (2016). Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage. Applied energy, 170, 324-328. https://doi.org/10.1016/j.apenergy.2016.02.106
Ibanez, M., Cabeza, L. F., Solé, C., Roca, J., & Nogués, M. (2006). Modelization of a water tank including a PCM module. Applied Thermal Engineering, 26(11-12), 1328-1333. https://doi.org/10.1016/j.applthermaleng.2005.10.022
Ibrahim, O., Fardoun, F., Younes, R., & Louahlia-Gualous, H. (2014). Review of water-heating systems: General selection approach based on energy and environmental aspects. Building and Environment, 72, 259-286. https://doi.org/10.1016/j.buildenv.2013.09.006
Jamar, A. M. Z. A. A., Majid, Z. A. A., Azmi, W. H., Norhafana, M., & Razak, A. A. (2016). A review of water heating system for solar energy applications. International Communications in Heat and Mass Transfer, 76, 178-187. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.028
Koestoer, R. A. (2022). Perpindahan kalor untuk mahasiswa teknik. Salemba Teknika.
Khot, S. A. (2014). Enhancement of thermal storage system using phase change material. Energy Procedia, 54, 142-151. https://doi.org/10.1016/j.egypro.2014.07.257
Koiv, T. A., Voll, H., & Haniv, A. (2010). Domestic hot water consumption in educational premises, apartment and office buildings. WSEAS TRANSACTIONS on Environment and Development, (1), 54-63.
Ma, Z., Glatzmaier, G., & Mehos, M. (2014). Fluidized bed technology for concentrating solar power with thermal energy storage. Journal of solar energy engineering, 136(3). https://doi.org/10.1115/1.4027262
Mahfuz, M. H., Anisur, M. R., Kibria, M. A., Saidur, R., & Metselaar, I. H. S. C. (2014). Performance investigation of thermal energy storage system with phase change material (PCM) for solar water heating application. International Communications in Heat and Mass Transfer, 57, 132-139. https://doi.org/10.1016/j.icheatmasstransfer.2014.07.022
Mazman, M., Cabeza, L. F., Mehling, H., Nogues, M., Evliya, H., & Paksoy, H. Ö. (2009). Utilization of phase change materials in solar domestic hot water systems. Renewable energy, 34(6), 1639-1643. https://doi.org/10.1016/j.renene.2008.10.016
Murakawa, S., Nishina, D., Takata, H., & Tanaka, A. (2005, September). An analysis on the loads of hot water consumption in the restaurants. In Proceedings of the 31st W062 International Symposium on Water Supply and Drainage for Buildings, Brussels, Belgium (pp. 14-16). https://www.semanticscholar.org/paper/An-Analysis-on-the-Loads-of-Hot-Water-Consumption-Murakawa-Nishina/35d59cb39f81943098faa08f3d3bd46e9cd24359
Nadjib, M., Santosa, T. H. A., & Marausna, G. (2022). Kajian unjuk kerja termal susunan kapsul phase-change material non-tumbuk di dalam tangki pemanas air tenaga surya sistem aktif. TEKNIK, 43(3), 227-235. https://doi.org/10.14710/teknik.v43i3.42149
Nadjib, M., Santosa, T. H. A., Sentosa, A. D., & Mukhlisin, D. (2022). Pengaruh variasi debit air terhadap unjuk kerja termal tangki pemanas air tenaga surya yang berisi phase-change material. JMPM (Jurnal Material dan Proses Manufaktur), 6(1). https://doi.org/10.18196/jmpm.v6i1.14795
Naghavi, M. S., Ong, K. S., Badruddin, I. A., Mehrali, M., & Metselaar, H. S. C. (2017). Thermal performance of a compact design heat pipe solar collector with latent heat storage in charging/discharging modes. Energy, 127, 101-115. https://doi.org/10.1016/j.energy.2017.03.097
Nallusamy, N., Sampath, S., & Velraj, R. J. R. E. (2007). Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources. Renewable energy, 32(7), 1206-1227. https://doi.org/10.1016/j.renene.2006.04.015
Nazir, H., Batool, M., Osorio, F. J. B., Isaza-Ruiz, M., Xu, X., Vignarooban, K., ... & Kannan, A. M. (2019). Recent developments in phase change materials for energy storage applications: A review. International Journal of Heat and Mass Transfer, 129, 491-523. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126
Nomura, T., Tsubota, M., Oya, T., Okinaka, N., & Akiyama, T. (2013). Heat storage in direct-contact heat exchanger with phase change material. Applied thermal engineering, 50(1), 26-34. https://doi.org/10.1016/j.applthermaleng.2012.04.062
Oduro-Kwarteng, S., Nyarko, K. B., Odai, S. N., & Aboagye-Sarfo, P. (2009). Water conservation potential in educational institutions in developing countries: case study of a university campus in Ghana. Urban water journal, 6(6), 449-455. https://doi.org/10.1080/15730620903108975
Padmaraju, S. V., Viginesh, M., & Nallusamy, N. (2008). Comparative study of sensible and latent heat storage systems integrated with solar water heating unit. Renewable Energy & Power Quality Journal, 1(6), 55-60. https://www.icrepq.com/icrepq-08/218-vijay.pdf
Rahmalina, D., & Rahman, R. A. (2022). Improving the phase transition characteristic and latent heat storage efficiency by forming polymer-based shape-stabilized PCM for active latent storage system. Case Studies in Thermal Engineering, 31, 101840. https://doi.org/10.1016/j.csite.2022.101840
Regin, A. F., Solanki, S. C., & Saini, J. S. (2008). Heat transfer characteristics of thermal energy storage system using PCM capsules: a review. Renewable and Sustainable Energy Reviews, 12(9), 2438-2458. https://doi.org/10.1016/j.rser.2007.06.009
Rubitherm Technologies GmbH. (2020, October 9). Technisches Datenblatt RT55. https://www.rubitherm.com/media/products/datasheets/Techdata_-RT55_DE_09102020.PDF
Salunkhe, P. B., & Shembekar, P. S. (2012). A review on effect of phase change material encapsulation on the thermal performance of a system. Renewable and sustainable energy reviews, 16(8), 5603-5616. https://doi.org/10.1016/j.rser.2012.05.037
Sen, Z. (2008). Solar energy fundamentals and modeling techniques: atmosphere, environment, climate change and renewable energy. Springer Science & Business Media.
Teamah, H. M., Lightstone, M. F., & Cotton, J. S. (2018). Potential of cascaded phase change materials in enhancing the performance of solar domestic hot water systems. Solar Energy, 159, 519-530. https://doi.org/10.1016/j.solener.2017.11.034
Tian, Y., & Zhao, C. Y. (2013). A review of solar collectors and thermal energy storage in solar thermal applications. Applied energy, 104, 538-553. https://doi.org/10.1016/j.apenergy.2012.11.051
Trp, A. (2005). An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit. Solar energy, 79(6), 648-660. https://doi.org/10.1016/j.solener.2005.03.006
Uctug, F. G., & Azapagic, A. (2018). Life cycle environmental impacts of domestic solar water heaters in Turkey: The effect of different climatic regions. Science of the Total Environment, 622, 1202-1216. https://doi.org/10.1016/j.scitotenv.2017.12.057
Wang, D., Wang, X., Chen, Y., Kang, W., & Liu, Y. (2019). Experimental study on performance test of serpentine flat plate collector with different pipe parameters and a new phase change collector. Energy Procedia, 158, 738-743. https://doi.org/10.1016/j.egypro.2019.01.197
Xue, H. S. (2016). Experimental investigation of a domestic solar water heater with solar collector coupled phase-change energy storage. Renewable Energy, 86, 257-261. https://doi.org/10.1016/j.renene.2015.08.017
Yao, R., & Steemers, K. (2005). A method of formulating energy load profile for domestic buildings in the UK. Energy and buildings, 37(6), 663-671. https://doi.org/10.1016/j.enbuild.2004.09.007
DOI: https://doi.org/10.18196/st.v26i1.18196
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Muhammad Nadjib, Novi Caroko, Thoharudin, Hanifan Darmawan
Editorial Office :
SEMESTA TEKNIKA
Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.
Jln. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia
Telp:(62)274-387656, Fax.:(62)274-387656
Email: semesta_teknika@umy.ac.id, semestateknika@umy.university
Website: http://http://journal.umy.ac.id/index.php/st
Semesta Teknika is licensed under a Creative Commons Attribution 4.0 International License.